Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The striking deep current reversal in the tropical Pacific Ocean

14.11.2006
The ocean's immense heat storage capacity means that it has a dominant role in the regulation of heat exchange and of the Earth's climate. And it is the ocean's currents that drive thermal exchanges between ocean and atmosphere and contribute to climate balance.

This they do in transporting warm- and cold-water masses from the Equator to the poles. The near-surface currents are generated essentially by the winds, whereas the deeper ones (known as thermohaline currents) result from water density variations induced by differences in temperature and salinity between the distinct masses.

The prevailing winds in the tropical Pacific, the trade winds, blow from the American continent towards Asia, causing the warm surface waters to drift in a general East-West direction. As they approach the Asian continent, these waters accumulate, then change direction, part of them turning North and feeding the Kuroshio (the equivalent in the Pacific of the Gulf Stream), part going South to join up with the East Australian current, another portion flowing at depth and feeding the Equatorial Undercurrent (EUC), which runs at between 100 and 150 m below the surface. The EUC flows along the Equator, from Papua New Guinea to the Galapagos Islands, counter to the trade winds. That current extends over a width of nearly 300 km and transports a large mass of water eastwards (1), at a maximum velocity of around 2 knots (1 m/s or 3.6 km/h).

Scientists are currently seeking to describe ocean circulation and improve on data acquired, aiming to identify the physical mechanisms that regulate climate variability. The impact of the ENSO (El Niño-Southern Oscillation) event on the climatic situation in the southern Pacific Ocean is still not well known, for instance. In two oceanographic cruises run in October 1999 and April 2000 as part of the IRD's ECOP programme, the Institute's researchers were able to study this region and, in particular, the ENSO. The latter has a determinant effect on the distribution of ocean water masses, ocean/atmosphere exchanges in the tropical southern Pacific and many anomalies of climate that occur on the continents that border the Pacific. Physical determinations of currents and masses of water under transport were made from the surface down to 1 200 m over a large area, 1700 km in length, along the Equator (between the Equator and 10° S latitude, between 165° and 180° E longitude), using a Lowered Acoustic Doppler Current Profiler (L- ADCP) (2) installed aboard R/V Alis, the IRD oceanographic research vessel.

These series of measurements give a well-defined picture of the tropical circulation in this zone, for two specific dates. They show up in particular the horizontal alternation of bands of currents of opposing directions between the Equator and 10° S latitude, from the surface to 1200 m. Essentially, however, they reveal a surprising variability of intermediate equatorial currents (the equatorial intermediate current (EIC) and the lower equatorial intermediate current (LEIC)), which plunge at the Equator under the Equatorial Undercurrent and flow in the same direction, between about 300 and 1200 m (see Figure). Between October 1999 and April 2000, these equatorial intermediate currents changed direction, between 2° S latitude and the Equator, over the 1 700 km of the zone investigated. This reversal is already known, but its amplitude in this case is striking. The resulting variation in water mass transport is considerable, around 100 Sv (50 Sv towards the West in October 1999 and 50 Sv towards the East in April 2000). The question is, what causes this change-about? One hypothesis put forward involves the passage of an oceanic instability wave, but no disturbance of the EUC was detected during the research cruises and the reversal remains unexplained. Further current measurement campaigns in the future should shed light on this event and bring clues for unravelling the dynamics of these currents. At present, such a change in ocean water mass transport must be taken into account in studies on the mass balance that exists in the equatorial Pacific Ocean. Mathematical models of ocean circulation are needed so that the variations in water transport can be reproduced, and thereby facilitate assessment of their impact on the climate variability, whether a seasonal, inter-annual or decennial temporal scales.

Marie Guillaume-Signoret | EurekAlert!
Further information:
http://www.ird.fr

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>