Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The striking deep current reversal in the tropical Pacific Ocean

14.11.2006
The ocean's immense heat storage capacity means that it has a dominant role in the regulation of heat exchange and of the Earth's climate. And it is the ocean's currents that drive thermal exchanges between ocean and atmosphere and contribute to climate balance.

This they do in transporting warm- and cold-water masses from the Equator to the poles. The near-surface currents are generated essentially by the winds, whereas the deeper ones (known as thermohaline currents) result from water density variations induced by differences in temperature and salinity between the distinct masses.

The prevailing winds in the tropical Pacific, the trade winds, blow from the American continent towards Asia, causing the warm surface waters to drift in a general East-West direction. As they approach the Asian continent, these waters accumulate, then change direction, part of them turning North and feeding the Kuroshio (the equivalent in the Pacific of the Gulf Stream), part going South to join up with the East Australian current, another portion flowing at depth and feeding the Equatorial Undercurrent (EUC), which runs at between 100 and 150 m below the surface. The EUC flows along the Equator, from Papua New Guinea to the Galapagos Islands, counter to the trade winds. That current extends over a width of nearly 300 km and transports a large mass of water eastwards (1), at a maximum velocity of around 2 knots (1 m/s or 3.6 km/h).

Scientists are currently seeking to describe ocean circulation and improve on data acquired, aiming to identify the physical mechanisms that regulate climate variability. The impact of the ENSO (El Niño-Southern Oscillation) event on the climatic situation in the southern Pacific Ocean is still not well known, for instance. In two oceanographic cruises run in October 1999 and April 2000 as part of the IRD's ECOP programme, the Institute's researchers were able to study this region and, in particular, the ENSO. The latter has a determinant effect on the distribution of ocean water masses, ocean/atmosphere exchanges in the tropical southern Pacific and many anomalies of climate that occur on the continents that border the Pacific. Physical determinations of currents and masses of water under transport were made from the surface down to 1 200 m over a large area, 1700 km in length, along the Equator (between the Equator and 10° S latitude, between 165° and 180° E longitude), using a Lowered Acoustic Doppler Current Profiler (L- ADCP) (2) installed aboard R/V Alis, the IRD oceanographic research vessel.

These series of measurements give a well-defined picture of the tropical circulation in this zone, for two specific dates. They show up in particular the horizontal alternation of bands of currents of opposing directions between the Equator and 10° S latitude, from the surface to 1200 m. Essentially, however, they reveal a surprising variability of intermediate equatorial currents (the equatorial intermediate current (EIC) and the lower equatorial intermediate current (LEIC)), which plunge at the Equator under the Equatorial Undercurrent and flow in the same direction, between about 300 and 1200 m (see Figure). Between October 1999 and April 2000, these equatorial intermediate currents changed direction, between 2° S latitude and the Equator, over the 1 700 km of the zone investigated. This reversal is already known, but its amplitude in this case is striking. The resulting variation in water mass transport is considerable, around 100 Sv (50 Sv towards the West in October 1999 and 50 Sv towards the East in April 2000). The question is, what causes this change-about? One hypothesis put forward involves the passage of an oceanic instability wave, but no disturbance of the EUC was detected during the research cruises and the reversal remains unexplained. Further current measurement campaigns in the future should shed light on this event and bring clues for unravelling the dynamics of these currents. At present, such a change in ocean water mass transport must be taken into account in studies on the mass balance that exists in the equatorial Pacific Ocean. Mathematical models of ocean circulation are needed so that the variations in water transport can be reproduced, and thereby facilitate assessment of their impact on the climate variability, whether a seasonal, inter-annual or decennial temporal scales.

Marie Guillaume-Signoret | EurekAlert!
Further information:
http://www.ird.fr

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>