Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The striking deep current reversal in the tropical Pacific Ocean

14.11.2006
The ocean's immense heat storage capacity means that it has a dominant role in the regulation of heat exchange and of the Earth's climate. And it is the ocean's currents that drive thermal exchanges between ocean and atmosphere and contribute to climate balance.

This they do in transporting warm- and cold-water masses from the Equator to the poles. The near-surface currents are generated essentially by the winds, whereas the deeper ones (known as thermohaline currents) result from water density variations induced by differences in temperature and salinity between the distinct masses.

The prevailing winds in the tropical Pacific, the trade winds, blow from the American continent towards Asia, causing the warm surface waters to drift in a general East-West direction. As they approach the Asian continent, these waters accumulate, then change direction, part of them turning North and feeding the Kuroshio (the equivalent in the Pacific of the Gulf Stream), part going South to join up with the East Australian current, another portion flowing at depth and feeding the Equatorial Undercurrent (EUC), which runs at between 100 and 150 m below the surface. The EUC flows along the Equator, from Papua New Guinea to the Galapagos Islands, counter to the trade winds. That current extends over a width of nearly 300 km and transports a large mass of water eastwards (1), at a maximum velocity of around 2 knots (1 m/s or 3.6 km/h).

Scientists are currently seeking to describe ocean circulation and improve on data acquired, aiming to identify the physical mechanisms that regulate climate variability. The impact of the ENSO (El Niño-Southern Oscillation) event on the climatic situation in the southern Pacific Ocean is still not well known, for instance. In two oceanographic cruises run in October 1999 and April 2000 as part of the IRD's ECOP programme, the Institute's researchers were able to study this region and, in particular, the ENSO. The latter has a determinant effect on the distribution of ocean water masses, ocean/atmosphere exchanges in the tropical southern Pacific and many anomalies of climate that occur on the continents that border the Pacific. Physical determinations of currents and masses of water under transport were made from the surface down to 1 200 m over a large area, 1700 km in length, along the Equator (between the Equator and 10° S latitude, between 165° and 180° E longitude), using a Lowered Acoustic Doppler Current Profiler (L- ADCP) (2) installed aboard R/V Alis, the IRD oceanographic research vessel.

These series of measurements give a well-defined picture of the tropical circulation in this zone, for two specific dates. They show up in particular the horizontal alternation of bands of currents of opposing directions between the Equator and 10° S latitude, from the surface to 1200 m. Essentially, however, they reveal a surprising variability of intermediate equatorial currents (the equatorial intermediate current (EIC) and the lower equatorial intermediate current (LEIC)), which plunge at the Equator under the Equatorial Undercurrent and flow in the same direction, between about 300 and 1200 m (see Figure). Between October 1999 and April 2000, these equatorial intermediate currents changed direction, between 2° S latitude and the Equator, over the 1 700 km of the zone investigated. This reversal is already known, but its amplitude in this case is striking. The resulting variation in water mass transport is considerable, around 100 Sv (50 Sv towards the West in October 1999 and 50 Sv towards the East in April 2000). The question is, what causes this change-about? One hypothesis put forward involves the passage of an oceanic instability wave, but no disturbance of the EUC was detected during the research cruises and the reversal remains unexplained. Further current measurement campaigns in the future should shed light on this event and bring clues for unravelling the dynamics of these currents. At present, such a change in ocean water mass transport must be taken into account in studies on the mass balance that exists in the equatorial Pacific Ocean. Mathematical models of ocean circulation are needed so that the variations in water transport can be reproduced, and thereby facilitate assessment of their impact on the climate variability, whether a seasonal, inter-annual or decennial temporal scales.

Marie Guillaume-Signoret | EurekAlert!
Further information:
http://www.ird.fr

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>