Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lewis and Clark data show narrower, more flood-prone river

14.11.2006
Across the wide Missouri

A geologist at Washington University in St. Louis and his collaborator at Oxford University have interpreted data that Lewis and Clark collected during their famous expedition and found that the Missouri River has markedly narrowed and its water levels have become more variable over the past two hundred years.

This narrowing, or channeling, created by wing dikes and levees constructed mainly in the 20th century, has put the Missouri River at an increased risk of more damaging floods, the authors say. They blame the fact that the river cannot spread out as it did naturally at the turn of the 19th century, thus forcing water levels higher. River narrowing also leads to greater fluctuation in day-to-day and seasonal water level height which may be partly to blame for declines in river wildlife, especially shallow-water spawning fish, birds nesting on sandbars, and wetland vegetation.

"The contrast is amazing if you compare graphs of river height against time taken in the 19th century vs. the 20th century. You'd think you were looking at two different rivers. The river today is 'flashy' with rapid up and down jumps in river height." said Bethany Ehlmann, the study's lead author and a Washington University graduate and Rhodes Scholar, who completed the study for her master's degree at Oxford University. "But if you look at data collected by Lewis and Clark in 1804 it matches almost perfectly with the second oldest data we have from the 1860s."

The quantitative data that Lewis and Clark collected is solid science that has been overlooked these two hundred years, according to coauthor Robert Criss, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences.

"Little attention has been paid to the remarkable measurements that these explorers made," said Criss, who in 2003 interpreted Lewis and Clark measurements to provide the oldest determinations of the magnetic declination of America's interior. "These men were gifted quantitative scientists. They gathered lots of valuable, accurate data that has not been evaluated. Lewis and Clark's scientific legacy has been almost completely overshadowed by emphasis on the heroic and patriotic aspects of manifest destiny and westward expansion.

They killed a bear; they measured a river

"Now, that's a wonderful story, told repeatedly many times over. It's very fun and inspiring reading, but it's all this' We killed a bear' stuff. The neglected story is the value of the day-to-day quantitative measurements that Lewis and Clark made. Every page of their journals is full of numbers and scientific experiments. "They did a very fine job of measuring the river," he said.

Criss said that Lewis and Clark at their Dubois and Fort Mandan river camps put sticks in the river each day and recorded in inches how much the river rose or fell each day. To get river width the Lewis and Clark explorers used surveying equipment, chains and compasses.

Criss and Ehlmann, now a doctoral candidate in geological sciences at Brown University, show many applications of Lewis and Clark's data in their paper published in the Nov. 2006 issue of Geology. For example, Lewis and Clark measured the Missouri River at St. Charles as 720 yards wide. Contemporary U.S. Army Corps of Engineers and United States Geological Services records show that the width now is just 470 yards across. Similarly, at the confluence of the Osage River and at Kansas City, Lewis and Clark measured the width of the Missouri River as 875 and 500 yards, respectively, which compare with contemporary readings of 400 and 330 yards, respectively.

Human changes to the Missouri River for irrigation, flood control, and navigation began in the early 19th century, just shortly after the voyage of Lewis and Clark. However, river discharge volume was not regularly recorded until the 1930s, long after denuding the shore of forests and river channeling with wing dikes had severely impacted the character and ecology of the river.

"What was the river like before we changed it?" Ehlmann asked rhetorically. "No one had looked at records before the 20th century. So we took Lewis and Clark's data, stage [water level] data from government records published in the late 1800s, and modern electronic stage files and did the simplest thing possible to look at the 200 -year record." Because stage data was always recorded relative to something--"and we didn't know always what that something was," said Ehlmann--the authors measured change in height from day to day and change in maximum and minimum annual heights relative to the annual mean. The authors found the increased variability in both measures began around 1900, just as intensive channelization began.

"We now have a composite record for the Missouri river that's almost three times as long as the previous one," Criss said. "The Lewis and Clark data give us a benchmark for the natural condition, which is so important in ecological studies. Whether you're studying rivers, as I do, or global warming, you have to know what's 'normal' to understand the history of the natural world. We now have a pre-development baseline for the Missouri River."

"As policy makers balance different needs in deciding how to manage the river, we hope that this new record will aid in establishing better flood control techniques and promoting ecosystem restoration," Ehlmann added. "Making room for the river, at least in some stretches, seems to solve both goals at the same time."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>