Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life in the extreme

09.11.2006
Cold seeps are deep-sea environments, usually a few square meters in size, where fluid is released through slow diffusion from the sea floor. Mud volcanoes which are active areas of fluid seepage, are other extreme environments discovered in the 1990s. These harsh conditions give rise to some of the most extreme and scientifically challenging environments for life to exist on the planet.

Extensive fields of hydrocarbon-rich gas seepage, mud volcanoes and pockmarks have all been mapped by the EUROCORES programme EUROMARGINS. On 4 - 6 October 2006, scientists from 50 different research groups in 12 different countries came together in Bologna, Italy to discuss future cross-discipline, pan-European and pan-World research following in the footsteps of this four year programme as EUROMARGINS is coming to an end.

Collaboration in the ‘cold’

As ocean sediments compact in cold seeps, fluids ooze out of the sediment and into the water. The cold-seep fluids contain chemical compounds produced by the decomposition of organic materials or by inorganic chemical reactions which occur at high temperatures and pressures.

Near cold seeps in the Eastern Mediterranean, Sébastien Duperron from Université Pierre et Marie Curie in France has found unique bacterial symbiosis with mussels. Symbiotic associations between bivalves (mussels) and bacteria allow the former to benefit from the bacteria’s ability to chemosynthetically (without light) derive energy from the chemical compounds produced and use this energy to ensure primary production.

“In the bivalve species Idas sp., we have found an association with six different symbionts. This is the widest diversity of symbionts ever described in a bivalve species,” said Duperron.

This means that the mussel, depending on which type of symbionts it carries, can derive its energy from either sulphide or methane. In addition, Duperron has also found that in the Idas sp., three of the symbionts belong to bacterial groups previously not reported to include symbiotic bacteria. They seem to provide their hosts with nutrient from a yet unidentified source.

But life in these alien environments can also exist without symbionts as Ian MacDonald from Texas A&M University, Corpus Christi US has demonstrated. His observations of the fauna around coastal margin hydrocarbon seeps in the Gulf of Mexico have revealed a habitat rich in biological activity and without a need for symbionts to extract nutrients.

MacDonald found that the productivity of deep-water seeps is overwhelmingly based on chemosynthesis (deriving energy from chemical compounds instead of light) and also some chemoautotrophic symbiosis (using a symbiont to derive energy from chemical compounds). However some communities of deep-sea corals associated with many seeps are probably filter feeders. Recent research findings indicate that the corals around the seeps may be much more widespread at seeps than previously realised. This fact adds to the biological diversity and ecological complexity of seep communities.

Underwater mud volcanoes

In the Nile deep-sea fan, mud volcanoes were discovered in the mid-1990s and they are still being investigated by a EUROMARGINS project. In the Gulf of Cadiz, the first mud volcanoes were discovered in 1999. The deepest mud volcano in this area is located at 3890m.

Luis Pinheiro from the University of Aveiro in Portugal participated in the 1999 cruise when mud volcanoes were first discovered. Pinheiro and his team have been investigating this area in close collaboration with Spain, France and Belgium. So far they have mapped 40 mud volcanoes, some as big as over 4km across and a few hundred meters high supporting characteristic ecosystems with particular faunal communities, living directly or indirectly on methane, some of which appear to represent completely new species to science.

Over four years, the EUROMARGINS have gatherered about 75 teams from 12 countries on a variety of complementary topics dedicated to the imaging, monitoring, reconstruction and modelling of the physical and chemical processes that occur in the passive margin system. Further information is available at www.esf.org/euromargins or by contacting euromargins@esf.org. When it comes to an end in late 2007, EUROMARGINS will be succeeded by new EUROCORES Programmes such as EuroMARC and Topo-Europe, which will both contribute to the future of European geosciences.

Sofia Valleley | alfa
Further information:
http://www.esf.org

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>