Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic eruptions found to poke holes in ozone layer

09.11.2006
Volcanic eruptions destroy ozone and create ‘mini-ozone holes’, according to two new studies by researchers at the Universities of Cambridge and Oxford.

The new research, spearheaded by Dr Genevieve Millard at the Department of Earth Sciences, University of Cambridge, discovered that volcanic gases released during eruptions accelerate reactions that lead to ozone destruction. The researchers found that even relatively small volcanic eruptions can destroy ozone and create localised ‘holes’ in the stratosphere.

Previously, scientists had concentrated on the climatic effects of the tiny particles of volcanic sulphate created from the sulphur dioxide gas emitted during an eruption. For the first time, analysing data from a 2000 eruption of the Hekla volcano, Iceland, the researchers discovered that volcanic gases may also lead to the formation of ice and nitric acid particles. This is a critical finding as these particles ‘switch on’ volcanic chorine gases, accelerating reactions that lead to ozone destruction.

Dr Millard said: 'We have shown for the first time that volcanic eruptions which penetrate the stratosphere can lead to the formation of the type of clouds that promote reactions with volcanic chlorine gases - gases that destroy stratospheric ozone and lead to the formation of "mini-ozone holes".

The ozone losses due to the small eruption at Hekla lasted for about two weeks, and eventually returned to normal levels. This is the first time that people have observed the complete removal of local ozone following a volcanic eruption.

'Now we want to find out what might happen to the ozone layer after a much larger eruption', said Dr David Pyle, University of Oxford, project coordinator, 'for example is there significant loss of ozone, and increased ultra-violet radiation, at low latitudes following large explosive eruptions? We want to understand this, so that we can have a better picture both of what might have happened in the past, and of what may happen in the future.'

Barbara Hott | alfa
Further information:
http://www.ox.ac.uk

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>