Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL sensor to measure natural airglow in the upper atmosphere

08.11.2006
The second of five Special Sensor Ultraviolet Limb Imager (SSULI) remote sensing instruments, developed by the Naval Research Laboratory, was launched on November 4, 2006 on board the DMSP F-17 satellite.

SSULI is the first operational instrument of its kind and provides a new technique for remote sensing of the ionosphere and thermosphere from space. SSULI's measurements will provide scientific data supporting military and civil systems and will assist in predicting atmospheric drag effects on satellites and reentry vehicles.

A Boeing Delta 4 vehicle launched the Air Force's Defense Meteorological Satellite Program (DMSP) F-17 satellite and the SSULI sensor into low earth orbit from Vandenberg Air Force Base, California. SSULI will be powered on and start initial sensor checkout 30 days after launch.

"Characterization of the Earth's upper atmosphere and ionosphere is a critical goal for Department of Defense (DoD) and civilian users," said Andrew Nicholas, the SSULI Principal Investigator at NRL. He discussed the significance of the planned SSULI observations, saying, "The upper atmosphere affects many systems from global to tactical scales. These systems include GPS positioning, HF radio communications, satellite drag and orbit determination, and over-the-horizon radar. Both the neutral atmosphere and the ionosphere are driven by solar and geomagnetic forcing that occur on many timescales ranging from short (minute, hours) to medium (days to months) to long (years). Real-time global observations that yield altitude profiles of the ionosphere and neutral atmosphere, over an extended period of time (DMSP through the year 2016) will fill a critical need."

SSULI measures vertical profiles of the natural airglow radiation from atoms, molecules, and ions in the upper atmosphere and ionosphere from low earth orbit aboard the DMSP satellite. It builds on the successes of the NRL High Resolution Airglow/Aurora Spectroscopy (HIRAAS) experiment recently flown aboard the Space Test Program (STP) Advanced Research and Global Observations Satellite (ARGOS). SSULI makes measurements from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm with 2.4 nm resolution. SSULI also measures the electron density and neutral density profiles of the emitting atmospheric constituents. SSULI uses a spectrograph with a mirror capable of scanning below the satellite horizon from 10 degrees to 27 degrees every 90 seconds. These observations represent a vertical slice of the Earth's atmosphere from 750 km to 50 km in depth. Use of these data enables the development of new techniques for global ionospheric remote sensing and new models of global electron density variation.

Commenting on the practical application of the instrument, Mr. Ken Weldy, the Program Manager at NRL said, "Since natural atmospheric phenomena can disrupt day-to-day operations in the military use of space, we look forward to providing SSULI operational products to feed into the Global Assimilation of Ionospheric Measurements (GAIM) model. This will provide an important piece of the characterization of the Earth's upper atmosphere and ionosphere."

An extensive data processing suite was developed to support on-orbit observations and flight operations. It includes data reduction software using unique science algorithms developed at NRL, comprehensive data validation techniques, and graphical interfaces for the user community. After launch, the SSULI sensor, software, and derived atmospheric specification will under go an extensive validation. After validation, SSULI products will be distributed by the Air Force Weather Agency to support operational DoD systems.

NRL Public Affairs | EurekAlert!
Further information:
http://www.nrl.navy.mil/tira/Projects/ssuli/
http://dmsp.ngdc.noaa.gov/dmsp.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>