Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change following collapse of the Maya empire

30.01.2002


Researchers from the University of Amsterdam have demonstrated that the climate in South Mexico changed following the collapse of the Maya empire. From preserved pollen grains the paleoecologists could deduce that the climate quickly became dryer.



The climate becoming dryer, explains the decrease in the population following the collapse of the Maya empire. The climate researchers have therefore helped to solve an archaeological mystery.

With the help of pollen grains, the paleoecologists from Amsterdam could accurately reconstruct the climate in a certain region. Each plant will only grow under certain conditions. By working out the overlap between the possible growth conditions for each plant in an area, an accurate picture of the local climate can be constructed.


In the area inhabited by the Mayas, Southern Mexico and Northern Guatemala, the researchers found that round about 1000 AD the climate quickly became dryer. This was about 100 years after the collapse of the Maya empire. The researchers suspect that after the collapse of the well-organised empire, the inhabitants destroyed many wildlife and agricultural areas. This led to erosion, as a result of which the evaporation, and thus the rainfall, decreased.

The pollen grains also provided information about farming in the distant past. In Peru the paleoecologists could reconstruct how the cultivation of maize and grain crops spread over various population groups. Certain population groups who lived as hunters and gatherers when the Spaniards arrived, were revealed to have a rich agricultural past.

The pollen research in South and Central America has also provided data that are important for current climate research. In an elevated area in Colombia, pollen grains were found from the last three million years. The paleoecologists examined which plants grew at various carbon dioxide concentrations in the atmosphere over the past 450,000 years. The carbon dioxide concentration in the air for this period is known, thanks to the discovery of frozen air bubbles in ice at the South Pole. The comparison revealed that in the past, plant growth was strongly correlated with carbon dioxide concentrations. The analyses revealed that not only the temperature changed but also the precipitation and the season in which this fell.

Michel Philippens | alphagalileo

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>