Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a meteor likely killed dinosaurs 65 million years ago

30.10.2006
Growing evidence shows a series of natural events caused extinction

Growing evidence shows that the dinosaurs and their contemporaries were not wiped out by the famed Chicxulub meteor impact alone, according to a paleontologist who says multiple meteor impacts, massive volcanism in India and climate changes culminated in the end of the Cretaceous Period.

The Chicxulub impact may have been the lesser and earlier of a series of meteor impacts and volcanic eruptions that pounded life on Earth for more than 500,000 years, say Princeton University paleontologist Gerta Keller and her collaborators Thierry Adatte from the University of Neuchatel, Switzerland, and Zsolt Berner and Doris Stueben from Karlsruhe University in Germany.

A final, much larger and still unidentified impact 65.5 million years ago appears to have been the last straw, said Keller, exterminating two-thirds of all species in one of the largest mass extinction events in the history of life. It's that impact - not Chicxulub - that left the famous extraterrestrial iridium layer found in rocks worldwide that marks the impact that finally ended the Age of Reptiles, Keller believes.

"The Chicxulub impact alone could not have caused the mass extinction," said Keller, "because this impact predates the mass extinction."

Keller is scheduled to present that evidence at the annual meeting of the Geological Society of America (GSA) in Philadelphia, on Tuesday, October 24, 2006.

"Chicxulub is one of thousands of impact craters on Earth's surface and in its subsurface," said H. Richard Lane, program director in the National Science Foundation (NSF) Division of Earth Sciences, which funded the research. "The evidence found by Keller and colleagues suggests that there is more to learn about what caused the major extinction event millions of years ago, and the demise of the dinosaurs at the end of the Cretaceous."

Marine sediments drilled from the Chicxulub crater itself, as well as from a site in Texas along the Brazos River and from outcrops in northeastern Mexico, reveal that Chicxulub hit Earth 300,000 years before the mass extinction. Microscopic marine animals were left virtually unscathed, said Keller.

"In all these localities we can analyze their microfossils in the sediments directly above and below the Chicxulub impact layer, and cannot find any significant biotic effect," said Keller. "We cannot attribute any specific extinctions to this impact."

The story that seems to be taking shape, according to Keller, is that Chicxulub, though violent, actually conspired with the prolonged and gigantic volcanic eruptions of the Deccan Flood Basalts in India, as well as with climate change, to nudge species towards the brink. They were then pushed over with a second large meteor impact.

The Deccan volcanism released vast amount of greenhouse gases into the atmosphere over a period of more than a million years leading up to the mass extinction. By the time Chicxulub struck, the oceans were already 3-4 degrees warmer, even at the bottom, Keller said.

"On land it must have been 7-8 degrees warmer," she said. "This greenhouse warming is well-documented. The temperature rise was rapid over about 20,000 years, and it stayed warm for about 100,000 years, then cooled back to normal well before the mass extinction."

Where's the crater? "I wish I knew," said Keller.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>