Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake swarms not just clustered around volcanoes, geothermal regions

30.10.2006
An earthquake swarm – a steady drumbeat of moderate, related seismic events – over hours or days, often can be observed near a volcano such as Mount St. Helens in Washington state or in a geothermal region such as Yellowstone National Park in Wyoming.

New research led by a University of Washington seismologist shows, however, that such swarms can occur anywhere that is seismically active, not just near volcanoes or geothermal regions.

"In our research we saw swarms everywhere and we could see the broad characteristics of how they behaved," said John Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismograph Network.

Vidale and two colleagues, Katie Boyle of Lawrence Livermore National Laboratory and Peter Shearer of the University of California, San Diego, examined data from 83 Japanese earthquake swarms over about 2½ years. Their findings confirmed work they published earlier this year that looked at data from 72 events in southern California during a 19-year span.

Both studies examined data collected from swarms in which at least 40 earthquakes were recorded in a few-mile radius over two weeks. The swarms did not follow the well-recognized pattern of an earthquake burst that begins with a main shock and is followed by numerous smaller aftershocks.

"We saw a mix of the two kinds of events, swarms or earthquakes and aftershocks, wherever we looked," Vidale said. "It confirms what people have suspected. There are earthquake swarms and they are responses to factors we can't see and don't have a direct way to measure."

The Japanese research is being published tomorrow in the online edition of Geophysical Research Letters.

The scientists suspect that "swarminess" in volcanic and geothermal zones might be driven by hot water or magma pushing fault seams apart or acting to reduce friction and enhancing the seismic activity in those areas.

Away from volcanic and thermal regions, it is unclear what triggers swarms that don't include main shocks and aftershocks, Vidale said. It is possible that swarms are driven by tectonic movements so gradual that they take many minutes to weeks to unfold but still are much more rapid than normal plate tectonic motions.

The researchers also found that, contrary to expectations, swarms occurring within 30 miles of Japan's volcanoes lasted perhaps twice as long as swarms in other types of geological formations. It was expected that earthquake episodes would have been briefer in hotter rock formations.

The results help to provide a clearer picture of how seismic swarms are triggered and give a better means of assessing the danger level for people living in tectonically active regions where earthquake swarms might occur, Vidale said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>