Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake swarms not just clustered around volcanoes, geothermal regions

30.10.2006
An earthquake swarm – a steady drumbeat of moderate, related seismic events – over hours or days, often can be observed near a volcano such as Mount St. Helens in Washington state or in a geothermal region such as Yellowstone National Park in Wyoming.

New research led by a University of Washington seismologist shows, however, that such swarms can occur anywhere that is seismically active, not just near volcanoes or geothermal regions.

"In our research we saw swarms everywhere and we could see the broad characteristics of how they behaved," said John Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismograph Network.

Vidale and two colleagues, Katie Boyle of Lawrence Livermore National Laboratory and Peter Shearer of the University of California, San Diego, examined data from 83 Japanese earthquake swarms over about 2½ years. Their findings confirmed work they published earlier this year that looked at data from 72 events in southern California during a 19-year span.

Both studies examined data collected from swarms in which at least 40 earthquakes were recorded in a few-mile radius over two weeks. The swarms did not follow the well-recognized pattern of an earthquake burst that begins with a main shock and is followed by numerous smaller aftershocks.

"We saw a mix of the two kinds of events, swarms or earthquakes and aftershocks, wherever we looked," Vidale said. "It confirms what people have suspected. There are earthquake swarms and they are responses to factors we can't see and don't have a direct way to measure."

The Japanese research is being published tomorrow in the online edition of Geophysical Research Letters.

The scientists suspect that "swarminess" in volcanic and geothermal zones might be driven by hot water or magma pushing fault seams apart or acting to reduce friction and enhancing the seismic activity in those areas.

Away from volcanic and thermal regions, it is unclear what triggers swarms that don't include main shocks and aftershocks, Vidale said. It is possible that swarms are driven by tectonic movements so gradual that they take many minutes to weeks to unfold but still are much more rapid than normal plate tectonic motions.

The researchers also found that, contrary to expectations, swarms occurring within 30 miles of Japan's volcanoes lasted perhaps twice as long as swarms in other types of geological formations. It was expected that earthquake episodes would have been briefer in hotter rock formations.

The results help to provide a clearer picture of how seismic swarms are triggered and give a better means of assessing the danger level for people living in tectonically active regions where earthquake swarms might occur, Vidale said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>