Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake swarms not just clustered around volcanoes, geothermal regions

30.10.2006
An earthquake swarm – a steady drumbeat of moderate, related seismic events – over hours or days, often can be observed near a volcano such as Mount St. Helens in Washington state or in a geothermal region such as Yellowstone National Park in Wyoming.

New research led by a University of Washington seismologist shows, however, that such swarms can occur anywhere that is seismically active, not just near volcanoes or geothermal regions.

"In our research we saw swarms everywhere and we could see the broad characteristics of how they behaved," said John Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismograph Network.

Vidale and two colleagues, Katie Boyle of Lawrence Livermore National Laboratory and Peter Shearer of the University of California, San Diego, examined data from 83 Japanese earthquake swarms over about 2½ years. Their findings confirmed work they published earlier this year that looked at data from 72 events in southern California during a 19-year span.

Both studies examined data collected from swarms in which at least 40 earthquakes were recorded in a few-mile radius over two weeks. The swarms did not follow the well-recognized pattern of an earthquake burst that begins with a main shock and is followed by numerous smaller aftershocks.

"We saw a mix of the two kinds of events, swarms or earthquakes and aftershocks, wherever we looked," Vidale said. "It confirms what people have suspected. There are earthquake swarms and they are responses to factors we can't see and don't have a direct way to measure."

The Japanese research is being published tomorrow in the online edition of Geophysical Research Letters.

The scientists suspect that "swarminess" in volcanic and geothermal zones might be driven by hot water or magma pushing fault seams apart or acting to reduce friction and enhancing the seismic activity in those areas.

Away from volcanic and thermal regions, it is unclear what triggers swarms that don't include main shocks and aftershocks, Vidale said. It is possible that swarms are driven by tectonic movements so gradual that they take many minutes to weeks to unfold but still are much more rapid than normal plate tectonic motions.

The researchers also found that, contrary to expectations, swarms occurring within 30 miles of Japan's volcanoes lasted perhaps twice as long as swarms in other types of geological formations. It was expected that earthquake episodes would have been briefer in hotter rock formations.

The results help to provide a clearer picture of how seismic swarms are triggered and give a better means of assessing the danger level for people living in tectonically active regions where earthquake swarms might occur, Vidale said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>