Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Looks at Sea Level Rise, Hurricane Risks to New York City

30.10.2006
New York City has been an area of concern during hurricane season for many years because of the large population and logistics. More than 8 million people live in the city, and it has hundreds of miles of coastline that are vulnerable to hurricane threats. Using computer climate models, scientists at NASA have looked at rising sea levels and hurricane storm surge and will report on them at a science meeting this week.

Cynthia Rosenzweig and Vivien Gornitz are scientists on a team at NASA's Goddard Institute for Space Studies (GISS) and Columbia University, New York City, investigating future climate change impacts in the metropolitan area. Gornitz and other NASA scientists have been working with the New York City Department of Environmental Protection (DEP) since 2004, by using computer models to simulate future climates and sea level rise. Recently, computer modeling studies have provided a more detailed picture of sea level rise around New York by the 2050's.

During most of the twentieth century, sea levels around the world have been steadily rising by 1.7 to 1.8 mm (~0.07 in) per year, increasing to nearly 3 mm (0.12 in) per year within just the last decade. Most of this rise in sea level comes from warming of the world’s oceans and melting of mountain glaciers, which have receded dramatically in many places since the early twentieth century. The 2001 report of the Intergovernmental Panel on Climate Change found that a global warming of 1.4° to 5.8° C (2.5° -10.4° F) could lead to a sea level rise of 0.09-0.88 meters (4 inches to 2.9 feet) by 2100.

A study conducted by Columbia University scientists for the U.S. Global Change Research Program in 2001 looked at several impacts of climate change on the New York metropolitan area, including sea level rise. The researchers projected a rise in sea level of 11.8 to 37.5 inches in New York City and 9.5 to 42.5 inches in the metropolitan region by the 2080s.

"With sea level at these higher levels, flooding by major storms would inundate many low-lying neighborhoods and shut down the entire metropolitan transportation system with much greater frequency," said Gornitz.

With sea level rise, New York City faces an increased risk of hurricane storm surge. Storm surge is an above normal rise in sea level accompanying a hurricane. Hurricanes are categorized on the Saffir-Simpson scale, from 1 to 5, with 5 being the strongest and most destructive. The scale is used to give an estimate of the potential property damage and flooding expected along the coast from a hurricane landfall. Wind speed is the determining factor in the scale, as storm surge values are highly dependent on the slope of the continental shelf and the shape of the coastline, in the landfall region.

A recent study by Rosenzweig and Gornitz in 2005 and 2006 using the GISS Atmosphere-Ocean Model global climate model for the Intergovernmental Panel on Climate Change projects a sea level rise of 15 to 19 inches by the 2050s in New York City. Adding as little as 1.5 feet of sea level rise by the 2050s to the surge for a category 3 hurricane on a worst-case track would cause extensive flooding in many parts of the city. Areas potentially under water include the Rockaways, Coney Island, much of southern Brooklyn and Queens, portions of Long Island City, Astoria, Flushing Meadows-Corona Park, Queens, lower Manhattan, and eastern Staten Island from Great Kills Harbor north to the Verrazano Bridge. Gornitz will present these findings at the annual meeting of the Geological Society of America in Philadelphia during the week of Oct. 23.

To understand what hurricane storm surges would do to the city, surge levels for hurricanes of categories 1 through 4 were calculated by the U.S. Army Corps of Engineers for the 1995 Metro New York Hurricane Transportation Study using NOAA’s SLOSH computer model. SLOSH (Sea, Lake and Overland Surges from Hurricanes) is a computerized model run by the National Hurricane Center to estimate storm surge heights resulting from historical, hypothetical, or predicted hurricanes by taking into account pressure; size, forward speed, track and hurricane winds.

According to the 1995 study, a category three hurricane on a worst-case track could create a surge of up to 25 feet at JFK Airport, 21 feet at the Lincoln Tunnel entrance, 24 feet at the Battery, and 16 feet at La Guardia Airport. These figures do not include the effects of tides nor the additional heights of waves on top of the surge. Some studies suggest that hurricane strengths may intensify in most parts of the world as oceans become warmer. However, how much more frequently they will occur is still highly uncertain.

Hurricanes have hit New York City in the past. The strongest hurricane was a category four storm at its peak in the Caribbean, which made landfall at Jamaica Bay on Sept. 3, 1821 with a 13-foot storm surge. It caused widespread flooding in lower Manhattan. The “Long Island Express” or “Great Hurricane of 1938," a category three, tracked across central Long Island and ripped into southern New England on Sept. 21, 1938, killing nearly 700 people. The storm pushed a 25-35 foot high wall of water ahead of it, sweeping away protective barrier dunes and buildings.

The 1995 Transportation study was done to assess the vulnerability of the city's transportation system to hurricane surges. The 2001 Columbia study was one of the regional studies for the U.S. National Assessment of Climate Variability and Change; the recent study for the NYC DEP was to evaluate potential climate change impacts, including sea level rise, on the agency's mandated activities and infrastructure.

"This entire work is solutions oriented," said Rosenzweig. "It's about helping NYC DEP and other New York City agencies make better preparations for climate extremes of today, and changing extremes of the future. The report will help us determine how can we do better job now, as well as in the future."

Leslie McCarthy | EurekAlert!
Further information:
http://www.nasa.gov/mission_pages/hurricanes/archives/2006/sealevel_nyc.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>