Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert dust feeds tropical rainforest

30.10.2006
The Amazon rainforest in South America relies on dust transported by winds from the Sahara desert in North Africa to replenish the nutrients and minerals in its soils.

For the first time, scientists have proved that over half the dust transported to the Amazon comes from one location in the Sahara, the Bodélé depression, even though it makes up less than 1% of the Sahara. Without this supply of dust to replenish the nutrients in its soils, the Amazon could become a wet desert.

The work is reported today in the first edition of the Institute of Physics open-access journal, Environmental Research Letters.

Dr Ilan Koren, lead author of the paper said: “The Bodélé is known as the largest source of dust in the world, but until now no-one had any idea how much dust it emits and what portion arrives in the Amazon. Using satellite data, we have calculated that it provides on average more than 0.7 million tons of dust on each day that it is actively emitting dust. It is most active during the winter and spring seasons unlike most of the other areas in the Sahara that emit dust. This is due to the seasonal shift of the surface winds of the Sahara.”

The Bodélé just 0.5% of the size of the whole Amazon yet it contributes almost half the amount of dust needed there to replenish the soils each year.

The most important condition for dust emission is surface wind speed. During the winter, strong surface winds (the Harmattan winds) occur along the southern border of the Sahara closer to the Sahel zone of west-central Africa. The Bodélé is a depression located downwind of a huge crater-like valley formed by the Tibesti and Ennedi mountains near the northern border of the Sahel. This crater narrows to a cone-shaped pass in the southwest corner of the valley. The shape of the pass focuses the winds like a lens focussing light and they speed up towards the Bodélé. It is the unique structure of the pass and the location with respect to the surface winds that causes the Bodélé to produce such a large amount of dust.

Dr Koren continued: “In the early morning on an emission day the winds speed up to the critical velocity for lifting and transporting dust when they reach the Bodélé. By using data from two satellites that take images of the same areas three hours apart, we can estimate the wind speed and calculate the size of the “dust parcels” that are produced at the Bodélé. We are then able to track the progress of the parcel the next day after it has left the Bodélé and watch it progress across the desert.”

“One satellite, MODIS, has extensive coverage of the area but doesn’t tell us anything about the quantities of dust over land whilst another, the MISR instrument, covers a very small area of land but can retrieve dust properties. Our work using data from both together for the first time has given us a valuable insight into the quantities of dust that are transported from the Bodélé. However this leads to more key questions: How long has the Bodélé emitted such a huge amount of dust to the Amazon and how long will it continue to do so? There has been a recent expedition to the area and we hope that further analysis from this and more satellite imaging that we will be able to answer these and further questions.”

Dianne Stilwell | alfa
Further information:
http://www.iop.org

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>