Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert dust feeds tropical rainforest

30.10.2006
The Amazon rainforest in South America relies on dust transported by winds from the Sahara desert in North Africa to replenish the nutrients and minerals in its soils.

For the first time, scientists have proved that over half the dust transported to the Amazon comes from one location in the Sahara, the Bodélé depression, even though it makes up less than 1% of the Sahara. Without this supply of dust to replenish the nutrients in its soils, the Amazon could become a wet desert.

The work is reported today in the first edition of the Institute of Physics open-access journal, Environmental Research Letters.

Dr Ilan Koren, lead author of the paper said: “The Bodélé is known as the largest source of dust in the world, but until now no-one had any idea how much dust it emits and what portion arrives in the Amazon. Using satellite data, we have calculated that it provides on average more than 0.7 million tons of dust on each day that it is actively emitting dust. It is most active during the winter and spring seasons unlike most of the other areas in the Sahara that emit dust. This is due to the seasonal shift of the surface winds of the Sahara.”

The Bodélé just 0.5% of the size of the whole Amazon yet it contributes almost half the amount of dust needed there to replenish the soils each year.

The most important condition for dust emission is surface wind speed. During the winter, strong surface winds (the Harmattan winds) occur along the southern border of the Sahara closer to the Sahel zone of west-central Africa. The Bodélé is a depression located downwind of a huge crater-like valley formed by the Tibesti and Ennedi mountains near the northern border of the Sahel. This crater narrows to a cone-shaped pass in the southwest corner of the valley. The shape of the pass focuses the winds like a lens focussing light and they speed up towards the Bodélé. It is the unique structure of the pass and the location with respect to the surface winds that causes the Bodélé to produce such a large amount of dust.

Dr Koren continued: “In the early morning on an emission day the winds speed up to the critical velocity for lifting and transporting dust when they reach the Bodélé. By using data from two satellites that take images of the same areas three hours apart, we can estimate the wind speed and calculate the size of the “dust parcels” that are produced at the Bodélé. We are then able to track the progress of the parcel the next day after it has left the Bodélé and watch it progress across the desert.”

“One satellite, MODIS, has extensive coverage of the area but doesn’t tell us anything about the quantities of dust over land whilst another, the MISR instrument, covers a very small area of land but can retrieve dust properties. Our work using data from both together for the first time has given us a valuable insight into the quantities of dust that are transported from the Bodélé. However this leads to more key questions: How long has the Bodélé emitted such a huge amount of dust to the Amazon and how long will it continue to do so? There has been a recent expedition to the area and we hope that further analysis from this and more satellite imaging that we will be able to answer these and further questions.”

Dianne Stilwell | alfa
Further information:
http://www.iop.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>