Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appalachian Mountains, carbon dioxide caused long-ago global cooling

27.10.2006
The rise of the Appalachian Mountains may have caused a major ice age approximately 450 million years ago, an Ohio State University study has found.

The weathering of the mountains pulled carbon dioxide (CO2) from the atmosphere, causing the opposite of a greenhouse effect -- an "icehouse" effect.

Scientists have suspected that our current ice age, which began 40 million years ago, was caused by the rise of the Himalayas. This new study links a much earlier major ice age --one that occurred during the Ordovician period -- to the uplift of the early Appalachians .

It also reinforces the notion that CO2 levels in the atmosphere are a major driver of Earth's climate.

Seth Young, a doctoral student in earth sciences at Ohio State, reported the new study October 25 at the Geological Society of America meeting in Philadelphia.

Because we are currently living in an ice age -- or, more precisely, in a slightly warmer interglacial period within an ice age -- CO2 levels worldwide would ordinarily be low; but scientists believe that humans have raised CO2 levels by burning fossil fuels.

Matthew Saltzman, professor of geological sciences and Young's advisor, looks for evidence of ancient climate change to help scientists gain perspective on the climate change of today. He believes the geologic record can help solve current debates.

One such debate is whether atmospheric carbon dioxide truly drives Earth's climate. The planet has shifted between greenhouse conditions and icehouse conditions throughout its history, and research from Saltzman's team strongly suggests that carbon dioxide levels are a key cause.

"In this study, we're seeing remarkable evidence that suggests atmospheric CO2 levels were in fact dropping at the same time that the planet was getting colder. So this significantly reinforces the idea that CO2 is a major driver of climate," Saltzman said.

This study builds on work the same team published in 2005, when they used quartz sandstone deposits in Nevada and two sites in Europe to determine when the Ordovician ice age began -- approximately 450 million years ago.

They've now analyzed the same set of rock samples in a different way, comparing the ratio of two isotopes of the element strontium, strontium-87 and strontium-86.

They found that, immediately prior to the time that the Ordovician ice age began, the strontium ratio dropped dramatically. The likely cause: a vast amount of volcanic rock was being eroded away, and the resulting sediment was being deposited in the world oceans.

"We observed a major shift in the geochemical record, which tells us something must have changed in the oceans," Young said.

The timing of the strontium ratio decline matches the rise of the Appalachian Mountains . The crustal plate underneath what is now the Atlantic Ocean pushed against the eastern side of North America, lifting ancient volcanic rock up from the seafloor and onto the continent.

This kind of silicate rock weathers quickly, Young explained. It reacts with CO2 and water, and the rock disintegrates. Carbon from the CO2 is trapped in the resulting sediment.

The chemical reaction that weathered away part of the Appalachians would have consumed large amounts of CO2 from the atmosphere –- right around the time that the Ordovician ice age began.

The Ordovician period started out warm, with high sea levels worldwide. It ended cold, with low sea levels as glaciers covered the poles and portions of the continents. According to the Ohio State study, most of the Appalachian weathering took place over 7 or 8 million years -- a very short time, by geological standards -- as the climate moved from one extreme to the next.

The crossover between greenhouse and icehouse conditions set the stage for mass extinctions around the planet at the end of the Ordovician.

"We are seeing a mechanism that changed a greenhouse state to an icehouse state, and it's linked to the weathering of these unique volcanic rocks," Young said.

This kind of rock is often called "island arc" rock, because it forms curved chains of volcanic islands such as Indonesia and Japan.

"Those rocks are around today, where you have ocean crust being subducted under a crustal plate," Young explained. "What's unusual about the Ordovician period is that those island arcs were being uplifted onto a continent. The ones in the Pacific Ocean now are mostly underwater, so they're not weathering away like the Appalachian rock did."

The rise and subsequent weathering of the Himalayas may have caused our current ice age, the one that began 40 million years ago.

"In the Himalayas, the process would have been the same -- silicate rocks are exposed to the atmosphere, weathering sucks CO2 out of the atmosphere and chills the planet," Saltzman said.

"This may be the only effective way to bring CO2 levels down to a threshold that's cool enough for ice to start building up."

Coauthors on the study included Kenneth Foland, a professor, and Jeff Linder, a research associate, both in earth sciences at Ohio State. The National Science Foundation funded this research.

Matthew Saltzman | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>