Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appalachian Mountains, carbon dioxide caused long-ago global cooling

27.10.2006
The rise of the Appalachian Mountains may have caused a major ice age approximately 450 million years ago, an Ohio State University study has found.

The weathering of the mountains pulled carbon dioxide (CO2) from the atmosphere, causing the opposite of a greenhouse effect -- an "icehouse" effect.

Scientists have suspected that our current ice age, which began 40 million years ago, was caused by the rise of the Himalayas. This new study links a much earlier major ice age --one that occurred during the Ordovician period -- to the uplift of the early Appalachians .

It also reinforces the notion that CO2 levels in the atmosphere are a major driver of Earth's climate.

Seth Young, a doctoral student in earth sciences at Ohio State, reported the new study October 25 at the Geological Society of America meeting in Philadelphia.

Because we are currently living in an ice age -- or, more precisely, in a slightly warmer interglacial period within an ice age -- CO2 levels worldwide would ordinarily be low; but scientists believe that humans have raised CO2 levels by burning fossil fuels.

Matthew Saltzman, professor of geological sciences and Young's advisor, looks for evidence of ancient climate change to help scientists gain perspective on the climate change of today. He believes the geologic record can help solve current debates.

One such debate is whether atmospheric carbon dioxide truly drives Earth's climate. The planet has shifted between greenhouse conditions and icehouse conditions throughout its history, and research from Saltzman's team strongly suggests that carbon dioxide levels are a key cause.

"In this study, we're seeing remarkable evidence that suggests atmospheric CO2 levels were in fact dropping at the same time that the planet was getting colder. So this significantly reinforces the idea that CO2 is a major driver of climate," Saltzman said.

This study builds on work the same team published in 2005, when they used quartz sandstone deposits in Nevada and two sites in Europe to determine when the Ordovician ice age began -- approximately 450 million years ago.

They've now analyzed the same set of rock samples in a different way, comparing the ratio of two isotopes of the element strontium, strontium-87 and strontium-86.

They found that, immediately prior to the time that the Ordovician ice age began, the strontium ratio dropped dramatically. The likely cause: a vast amount of volcanic rock was being eroded away, and the resulting sediment was being deposited in the world oceans.

"We observed a major shift in the geochemical record, which tells us something must have changed in the oceans," Young said.

The timing of the strontium ratio decline matches the rise of the Appalachian Mountains . The crustal plate underneath what is now the Atlantic Ocean pushed against the eastern side of North America, lifting ancient volcanic rock up from the seafloor and onto the continent.

This kind of silicate rock weathers quickly, Young explained. It reacts with CO2 and water, and the rock disintegrates. Carbon from the CO2 is trapped in the resulting sediment.

The chemical reaction that weathered away part of the Appalachians would have consumed large amounts of CO2 from the atmosphere –- right around the time that the Ordovician ice age began.

The Ordovician period started out warm, with high sea levels worldwide. It ended cold, with low sea levels as glaciers covered the poles and portions of the continents. According to the Ohio State study, most of the Appalachian weathering took place over 7 or 8 million years -- a very short time, by geological standards -- as the climate moved from one extreme to the next.

The crossover between greenhouse and icehouse conditions set the stage for mass extinctions around the planet at the end of the Ordovician.

"We are seeing a mechanism that changed a greenhouse state to an icehouse state, and it's linked to the weathering of these unique volcanic rocks," Young said.

This kind of rock is often called "island arc" rock, because it forms curved chains of volcanic islands such as Indonesia and Japan.

"Those rocks are around today, where you have ocean crust being subducted under a crustal plate," Young explained. "What's unusual about the Ordovician period is that those island arcs were being uplifted onto a continent. The ones in the Pacific Ocean now are mostly underwater, so they're not weathering away like the Appalachian rock did."

The rise and subsequent weathering of the Himalayas may have caused our current ice age, the one that began 40 million years ago.

"In the Himalayas, the process would have been the same -- silicate rocks are exposed to the atmosphere, weathering sucks CO2 out of the atmosphere and chills the planet," Saltzman said.

"This may be the only effective way to bring CO2 levels down to a threshold that's cool enough for ice to start building up."

Coauthors on the study included Kenneth Foland, a professor, and Jeff Linder, a research associate, both in earth sciences at Ohio State. The National Science Foundation funded this research.

Matthew Saltzman | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>