Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence of early horse domestication

26.10.2006
Soil from a Copper Age site in northern Kazakhstan has yielded new evidence for domesticated horses up to 5,600 years ago.

The discovery, consisting of phosphorus-enriched soils inside what appear to be the remains of horse corrals beside pit houses, matches what would be expected from Earth once enriched by horse manure. The Krasnyi Yar site was inhabited by people of the Botai culture of the Eurasian Steppe, who relied heavily on horses for food, tools, and transport.

"There's very little direct evidence of horse domestication," says Sandra Olsen, an archaeologist and horse domestication researcher at the Carnegie Museum of Natural History in Pittsburgh, PA. That's because 5,600 years ago there were no saddles or metal bits to leave behind. Equipment like bridles, leads, and hobbles would have been made from thongs of horse hide, and would have rotted away long ago. Likewise horses themselves have not changed much physically as a result of domestication, unlike dogs or cattle. So ancient horse bones don't easily reveal the secrets of domestication.

With research funding from the National Science Foundation, Olsen's team took a different tack. They looked for circumstantial evidence that people were keeping horses. One approach was to survey the Krasnyi Yar site with instruments to map out subtle electrical and magnetic irregularities in the soils. With this they were able to identify the locations of 54 pit houses and dozens of post moulds where vertical posts once stood. Some of the post moulds were arranged circularly, as would be most practical for a corral.

Next, geologist Michael Rosenmeier from the University of Pittsburgh collected soil samples from inside the fenced area and outside the settlement. The samples were analyzed for nitrogen, phosphorus, potassium, and sodium concentrations by Rosemary Capo, University of Pittsburgh geochemist, and her students. Modern horse manure is rich in phosphorous, potassium, and especially nitrogen, compared to undisturbed soils. But because nitrogen is mobile in soils, it can be lost to groundwater or transferred to the atmosphere by organic and inorganic processes. Phosphorus, on the other hand, can be locked into place by calcium and iron and is more likely to be preserved in the soils for millennia.

As it turned out, the soil from inside the alleged corral had up to ten times the phosphorus concentration as the soils from outside the settlement. Lots of phosphorus can also indicate a hearth, said Capo, but that phosphorus is usually accompanied by a lot of potassium, which is not the case in the corral at Krasnyi Yar.

The corral soils also had low nitrogen concentrations, says Capo, reducing the likelihood that the phosphorus came from more recent manure. "That's good, actually," she said of the recently completed nitrogen analyses. "It suggests we've got old stuff."

Even more compelling will be if we find long-lived molecules of fat, or lipids, directly attributed to horse manure in the soils, says Olsen.

The latest results from Krasnyi Yar site will be on display Monday morning, 23 October, at the Annual Meeting of the Geological Society of America in Philadelphia.

Early as the Botai were, they were probably not the first to domesticate horses, says Olsen. "The very first horse domestication was probably a bit earlier in Ukraine or western Russia," she said. "Then some horse-herders migrated east to Kazakhstan."

Horses allowed the Botai to build large perennial villages with, in one case, hundreds of homes. They did so without the benefit of agriculture, Olsen explained, as theirs was a horse economy.

The Botai were able to stay put year-round because horses are very well adapted to cold winters, she said. "Horses can survive ice storms and don't need heated barns or winter fodder," Olsen said. They are, in fact, some of the last remaining large, Ice Age, Pleistocene mammals living in one of the last places on Earth where Pleistocene vegetation survives.

Because they were domesticated, the horses supplied meat year-round and vitamin-rich mare's milk from spring through fall. "No one in their right mind would try to milk a wild mare," said Olsen.

There is also evidence that the Botai were carrying a lot of heavy material, like rocks and large skulls, over long distances. That is a lot more practical and explicable if they used pack horses.

Later people of the same region adopted shepherding and cattle raising, said Olsen. That created a more nomadic culture, since sheep and cattle are not well suited for sub-zero climates and therefore needed to be taken south in winter. The tradeoff, she says, was that cows and sheep give far fattier milk year round, which can be made into yogurt and cheese. Sheep also provide wool.

Kazakh people today still eat horsemeat. They were forced to abandon their nomadic lifestyle during the Soviet era and have returned to small village pastoralism, Olsen says.

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>