Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf bay double whammy: Rising seas, dammed rivers

26.10.2006
Oceanographers find dramatic 'flooding events' are norm, not exception

New research finds that every U.S Gulf Coast bay in Texas and Louisiana is vulnerable to significant flooding and expansion within the coming century due to a combination of rising seas and reduced silt flowing from dammed up rivers.

"Looking back over the past 10,000 years, we find the evolution of each of these bays is punctuated by rapid flooding events that result in landward shifts in bay environments of tens of kilometers and increases in bay area up to 30 percent within a century or two," said John Anderson, the W. Maurice Ewing Chair in Oceanography and professor of earth science at Rice University in Houston. "These flooding events can be triggered by either a rapid increase in sea level or a rapid decrease in the amount of silt flowing into the bay, and there's ample evidence to suggest that both of those will occur in each of these bays during the coming century."

Anderson will present his findings today at the Geological Society of America's 118th annual meeting at the Pennsylvania Convention Center in Philadelphia.

Anderson's results are based on his research group's analysis of dozens of sediment core samples drilled during the past decade from Galveston, Corpus Christi and Matagorda bays, all in Texas; Calcasieu Lake in Louisiana; and Sabine Lake, which straddles the Texas-Louisiana border.

"Over the past 10,000 years, there are an average of a half-dozen of these flooding events in each bay," Anderson said. "They don't correlate with any global increase in sea level, and they happen at different times in different bays, so we're confident that the driving factor in these events is a decrease in the amount of river-borne sediment flowing into the bay."

In the past century, multiple dams were constructed on each of the rivers flowing into each of these bays. Anderson said there is ample evidence that the dams have reduced the amount of sediments flowing from the rivers into the bays.

In addition, there is a growing body of evidence that sea level will increase more rapidly in the 21st Century than it has in several thousand years.

Based on marine sedimentary records, oceanographers know that sea level has been rising for the past 10,000 years, but the rate at which it's rising has been slowly falling for about 5,000 years. But that trend is apparently changing, with the latest satellite data indicating that seas worldwide are rising at an average rate of five millimeters per year – a striking contrast to the rate of two millimeters per year that was recorded by tide gauges throughout most of the 20th Century.

In some locations, warming water temperatures, land subsidence and other factors can exert a local influence, causing sea level to rise even faster. This also appears to be the case along the Texas-Louisiana coast, which is sinking by an average of two millimeters per year, and up to twice that much in certain areas.

"Bay-head deltas are just like the wetlands that have been disappearing in southeastern Louisiana in recent decades," Anderson said. "They have to be renewed with river-borne sediments in order to maintain themselves in the face of steadily rising seas."

Anderson said the geological record shows that sediment flowing into the five bays has tended to just keep pace with rising sea level over the past 10,000 years. The flooding events mark points in time when this delicate balance was upset. The most dramatic event occurred in Galveston Bay between 7,300-7,100 years ago. In that geological instant, the boundary between river and bay receded about 35 kilometers upstream.

"At that time, the head of the bay was somewhere north of I-10, but sediments flowing back into the bay from the Trinity River pushed that back south to the present location, creating Lake Anahuac in the process," Anderson said. "The creation of Lake Livingston and other lakes on the Upper Trinity has significantly reduced the amount of sediments flow into the bay, and data collected by the Texas Bureau of Economic Geology and the United States Geological Survey indicate that the headland marshes are teetering on the brink."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>