Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf bay double whammy: Rising seas, dammed rivers

26.10.2006
Oceanographers find dramatic 'flooding events' are norm, not exception

New research finds that every U.S Gulf Coast bay in Texas and Louisiana is vulnerable to significant flooding and expansion within the coming century due to a combination of rising seas and reduced silt flowing from dammed up rivers.

"Looking back over the past 10,000 years, we find the evolution of each of these bays is punctuated by rapid flooding events that result in landward shifts in bay environments of tens of kilometers and increases in bay area up to 30 percent within a century or two," said John Anderson, the W. Maurice Ewing Chair in Oceanography and professor of earth science at Rice University in Houston. "These flooding events can be triggered by either a rapid increase in sea level or a rapid decrease in the amount of silt flowing into the bay, and there's ample evidence to suggest that both of those will occur in each of these bays during the coming century."

Anderson will present his findings today at the Geological Society of America's 118th annual meeting at the Pennsylvania Convention Center in Philadelphia.

Anderson's results are based on his research group's analysis of dozens of sediment core samples drilled during the past decade from Galveston, Corpus Christi and Matagorda bays, all in Texas; Calcasieu Lake in Louisiana; and Sabine Lake, which straddles the Texas-Louisiana border.

"Over the past 10,000 years, there are an average of a half-dozen of these flooding events in each bay," Anderson said. "They don't correlate with any global increase in sea level, and they happen at different times in different bays, so we're confident that the driving factor in these events is a decrease in the amount of river-borne sediment flowing into the bay."

In the past century, multiple dams were constructed on each of the rivers flowing into each of these bays. Anderson said there is ample evidence that the dams have reduced the amount of sediments flowing from the rivers into the bays.

In addition, there is a growing body of evidence that sea level will increase more rapidly in the 21st Century than it has in several thousand years.

Based on marine sedimentary records, oceanographers know that sea level has been rising for the past 10,000 years, but the rate at which it's rising has been slowly falling for about 5,000 years. But that trend is apparently changing, with the latest satellite data indicating that seas worldwide are rising at an average rate of five millimeters per year – a striking contrast to the rate of two millimeters per year that was recorded by tide gauges throughout most of the 20th Century.

In some locations, warming water temperatures, land subsidence and other factors can exert a local influence, causing sea level to rise even faster. This also appears to be the case along the Texas-Louisiana coast, which is sinking by an average of two millimeters per year, and up to twice that much in certain areas.

"Bay-head deltas are just like the wetlands that have been disappearing in southeastern Louisiana in recent decades," Anderson said. "They have to be renewed with river-borne sediments in order to maintain themselves in the face of steadily rising seas."

Anderson said the geological record shows that sediment flowing into the five bays has tended to just keep pace with rising sea level over the past 10,000 years. The flooding events mark points in time when this delicate balance was upset. The most dramatic event occurred in Galveston Bay between 7,300-7,100 years ago. In that geological instant, the boundary between river and bay receded about 35 kilometers upstream.

"At that time, the head of the bay was somewhere north of I-10, but sediments flowing back into the bay from the Trinity River pushed that back south to the present location, creating Lake Anahuac in the process," Anderson said. "The creation of Lake Livingston and other lakes on the Upper Trinity has significantly reduced the amount of sediments flow into the bay, and data collected by the Texas Bureau of Economic Geology and the United States Geological Survey indicate that the headland marshes are teetering on the brink."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>