Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geological feature key to finding, protecting tombs

24.10.2006
A 42-year-old method for finding water, monitoring pollution and helping with tunneling may also be a way to locate and protect tombs in the Valleys of the Kings and Queens and other burial sites in Egypt, according to Penn State researchers.

The idea that fracture traces could bare some connection to the rock cut tombs found in Egyptian valleys came to Katarin A. Parizek as she toured Egypt. K. Parizek, the daughter of Richard R. Parizek, professor of geology and geo-environmental engineering at Penn State, is a digital photographer, graphic designer and geologist. In 1992, on a Nile cruise to the Valley of the Kings near Luxor, she recognized the geological structures.

"Many of the tombs were in zones of fracture concentration revealed by fracture traces and lineaments," says K. Parizek, an instructor in digital photography. "I knew that these fractures were what Dad used to find water or to plan dewatering projects."

Fracture traces are the above-ground indication of underlying zones of rock fracture concentrations. In 1964, Laurence H. Lattman and R. Parizek published a paper on fracture traces that indicated where increased weathering and permeability occurred and where people could drill wells more efficiently. These fracture traces can be between 5 and 40 feet wide, but average about 20 feet, and can be as long as a mile.

An initial study in Egypt showed that some tomb passages and resting chambers were aligned along these fracture zones, suggesting that the builders knew that these locations had less resistant rocks and easier digging. The Parizeks report today (Oct. 22) at the annual meeting of the Geological Society of America in Philadelphia, on recent work in the area.

More extensive surface and subsurface mapping confirmed the idea that the builders knew what they were doing. The tomb builders placed the entrances to their tombs in valley bottoms or receding depressions on the cliffs where the crumbling stone would hide the tombs. These tombs, built between 1500 and 1000 B.C., usually have a long entry hall leading to a burial chamber. They may have additional rooms for equipment and provisions and other storage areas. Tomb walls are often plastered and painted. The tombs are usually built sloping downward or actually have vertical shafts. To date, 63 tombs are identified in the Valley of the Kings with tomb 63 located in February 2006.

"Katarin predicted that the location of still to be discovered tombs might be determined using the fracture-trace method," R. Parizek said. "The discovery of KV-63 showed the correlation between tombs and fracture traces."

While locating previously unidentified tombs is a worthy endeavor, perhaps even more important is preserving the tombs. Many of these are open for viewing by the public and are the responsibility of the Egyptian Ministry of Antiquities. Maintaining the tombs is a complex and complicated job.

While it does not often rain in the desert, when it does, water pours off hills and runs over the land and into the wadis – valleys. Paving of parking lots, roads and paths to allow tomb visitors increases the flooding. Even though the Egyptians build barriers at the tomb entrances, water often flows into the tunnels causing irreversible damage to the tombs.

The open entrances, however, are not the only way water enters the tombs. Water finds the fracture concentrations beneath the fracture traces and seeps into the ground. If tombs are built along or below the traces, eventually water insinuates itself through the fractured rock and enters the tombs. Water can ruin even undiscovered, unopened tombs in this way.

"If we can map the fracture traces and their associated fracture zones above and below ground, then we can see how to divert water so that it not only misses the tomb entrances, but also bypasses the permeable areas of the traces," says R. Parizek.

Water entering tombs through the fractured rock also causes major damage to roofs and pillars in the tombs. The researchers note that even without water, the pillars and roofs are more unstable on fracture zones. With water, the limestone rock weakens and breaks off. Because of these rock stability problems, tombs are closed for fear of injury to visitors.

"What they need to do is channel water along the pavement, away from the pathways that otherwise lead into the tombs," says K. Parizek. "Keep flow away from the tombs."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>