Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to live with oxygen on early Earth

17.10.2006
Scientists at the Carnegie Institution and Penn State University* have discovered evidence showing that microbes adapted to living with oxygen 2.72 billion years ago, at least 300 million years before the rise of oxygen in the atmosphere.

The finding is the first concrete validation of a long-held hypothesis that oxygen was being produced and consumed by that time and that the transition to an oxygenated atmosphere was long term. The results are published in the on-line early edition of the Proceedings of the National Academy of Science, to appear the week of October 16th.

It is generally believed that before 2.4 billion years ago, Earth's atmosphere was essentially devoid of oxygen. Exactly when and how oxygen-producing photosynthesis evolved and began fueling the atmosphere with the gas that much of life depends on has been hotly debated for some time. Plants, algae, and cyanobacteria (blue-green algae) emit oxygen as a waste product of photosynthesis--the process by which sugar, essential for nutrition, is made from light, water, and carbon dioxide.

"Our evidence points to the likelihood that Earth was peppered with small 'oases' of shallow-water, oxygen-producing, photosynthetic microbes around 2.7 billion years ago," stated lead author Jennifer Eigenbrode of Carnegie's Geophysical Laboratory, who collected the data while pursuing her Ph.D. at Penn State. "Over time these oases must have expanded, eventually enriching the atmosphere with oxygen. Our data record this transition."

The researchers discovered changes in fossil isotopes of the life-essential element carbon in a 150 million-year section of rock that included shallow and deepwater sediments from the late Archean period (the Archean lasted from 3.8 to 2.5 billion years ago) in Hamersley Province in Western Australia. Isotopes are different forms of an element's atoms. The relative proportions of carbon and other isotopes in organic matter depend on chemical reactions that happen as the carbon wends its way through an organism's metabolism. There are two stable isotopes of carbon found in nature--12C and 13C--which differ only in the number of neutrons in the nucleus. By far the most abundant variety is in the lighter, 12C. About 1% is 13C, a heavier sibling with an additional neutron; it is the key to understanding photosynthetic organisms.

"Photosynthetic microbes evolved in the shallow water where light was plentiful," explained Eigenbrode. "They used light and CO2 to produce their food, like cyanobacteria do today. They gobbled up 12C and 13C, which became part of the organisms. The results are recorded in the rocks containing the remains for us to find billions of years later. Organisms leave behind different mixes of 12C and 13C depending on what they eat and how they metabolize it. Changes in these chemical fingerprints tell us about changes in how organisms got their energy and food."

In the Archean, microbes that could not live with oxygen--anaerobic organisms--ended up with relatively small amounts of 13C. As oxygen became available in shallow water due to oxygen-producing photosynthesis, anaerobic organisms were out-competed by microbes that had adapted to oxygen. As a result, the amount of 13C increased--first in shallow water, then in deeper water. Changes in the mix of carbon isotopes in these late Archean rocks indicate microbes were learning to live with oxygen well before the atmosphere began accumulating noticeable amounts of oxygen.

Jennifer Eigenbrode | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>