Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to live with oxygen on early Earth

17.10.2006
Scientists at the Carnegie Institution and Penn State University* have discovered evidence showing that microbes adapted to living with oxygen 2.72 billion years ago, at least 300 million years before the rise of oxygen in the atmosphere.

The finding is the first concrete validation of a long-held hypothesis that oxygen was being produced and consumed by that time and that the transition to an oxygenated atmosphere was long term. The results are published in the on-line early edition of the Proceedings of the National Academy of Science, to appear the week of October 16th.

It is generally believed that before 2.4 billion years ago, Earth's atmosphere was essentially devoid of oxygen. Exactly when and how oxygen-producing photosynthesis evolved and began fueling the atmosphere with the gas that much of life depends on has been hotly debated for some time. Plants, algae, and cyanobacteria (blue-green algae) emit oxygen as a waste product of photosynthesis--the process by which sugar, essential for nutrition, is made from light, water, and carbon dioxide.

"Our evidence points to the likelihood that Earth was peppered with small 'oases' of shallow-water, oxygen-producing, photosynthetic microbes around 2.7 billion years ago," stated lead author Jennifer Eigenbrode of Carnegie's Geophysical Laboratory, who collected the data while pursuing her Ph.D. at Penn State. "Over time these oases must have expanded, eventually enriching the atmosphere with oxygen. Our data record this transition."

The researchers discovered changes in fossil isotopes of the life-essential element carbon in a 150 million-year section of rock that included shallow and deepwater sediments from the late Archean period (the Archean lasted from 3.8 to 2.5 billion years ago) in Hamersley Province in Western Australia. Isotopes are different forms of an element's atoms. The relative proportions of carbon and other isotopes in organic matter depend on chemical reactions that happen as the carbon wends its way through an organism's metabolism. There are two stable isotopes of carbon found in nature--12C and 13C--which differ only in the number of neutrons in the nucleus. By far the most abundant variety is in the lighter, 12C. About 1% is 13C, a heavier sibling with an additional neutron; it is the key to understanding photosynthetic organisms.

"Photosynthetic microbes evolved in the shallow water where light was plentiful," explained Eigenbrode. "They used light and CO2 to produce their food, like cyanobacteria do today. They gobbled up 12C and 13C, which became part of the organisms. The results are recorded in the rocks containing the remains for us to find billions of years later. Organisms leave behind different mixes of 12C and 13C depending on what they eat and how they metabolize it. Changes in these chemical fingerprints tell us about changes in how organisms got their energy and food."

In the Archean, microbes that could not live with oxygen--anaerobic organisms--ended up with relatively small amounts of 13C. As oxygen became available in shallow water due to oxygen-producing photosynthesis, anaerobic organisms were out-competed by microbes that had adapted to oxygen. As a result, the amount of 13C increased--first in shallow water, then in deeper water. Changes in the mix of carbon isotopes in these late Archean rocks indicate microbes were learning to live with oxygen well before the atmosphere began accumulating noticeable amounts of oxygen.

Jennifer Eigenbrode | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>