Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shrinking ponds signal warmer, dryer Alaska

A first-of-its kind analysis of fifty years of remotely sensed imagery from the 1950s to 2002 shows a dramatic reduction in the size and number of more than 10,000 ponds in Alaska.

The analysis, by University of Alaska Fairbanks scientists and published this week in the Journal of Geophysical Research, indicates that these landscape-level changes in arctic ponds are associated with recent climate warming in Alaska and may have profound effects on climate and wildlife.

Over the past 50 years, Alaska has experienced a warming climate with longer growing seasons, increased permafrost thawing, an increase in water loss due to evaporation from open water and transpiration from vegetation, and yet no substantial change in precipitation.

The shrinking of these closed-basin ponds may be indicative of widespread lowering of the water table throughout low-lying landscapes in Interior Alaska, write the authors. A lowered water table negatively affects the ability of wetlands to regulate climate because it enhances the release of carbon dioxide by exposing soil carbon to aerobic decomposition.

“Alaska is important in terms of waterfowl production and if you have a lowering of the water table that could have a potentially huge impact on waterfowl production,” said Dave Verbyla, co-author and professor in the School of Natural Resources and Agricultural Sciences at UAF.

“This is an issue relevant to flyway management in terms of all the waterfowl that might use the Yukon Flats National Wildlife Refuge and overwinter elsewhere, and this is something that goes beyond the refuges in Alaska,” said A. David McGuire, co-author and professor of ecology at the Institute of Arctic Biology at UAF.

National Wildlife Refuges cover more than 77 million acres in Alaska and make up 81% of the national refuge system. These refuges provide breeding habitat for millions of waterfowl and shorebirds that overwinter in more southerly regions of North America.

“No one has done a state water-body inventory of this magnitude,” said Brian Riordan, lead author and data manager for the Bonanza Creek Long-Term Ecological Research program at UAF. “It will allow land managers to stop speculating about possible water body loss and begin to address the implications of this loss.”

Using black and white aerial photographs from the 1950s, color infrared aerial photographs from 1978-1982, and digital images from the Landsat satellite from 1999-2002, Riordan outlined each pond by hand. “With automated classification your accuracy goes down,” Riordan said. Cloud shadows can look like water and Alaska rarely experiences a cloudless day, said Verbyla.

The most difficult part of the four-year project, said Riordan, was “having the patience to circle 10,000 ponds for each time period.”

The main study area was the subarctic boreal region of Interior Alaska, which spans more than 5 million square kilometers bounded on the north by the Brooks Range and on the south by the Alaska Range. To contrast the semi-arid, subarctic sites of discontinuous permafrost in Interior Alaska, the authors also selected a study area in the Arctic Coastal Plain where the temperatures are much colder, the growing season much shorter, and the permafrost is continuous, and a more maritime site south of the Alaska Range.

All ponds in the study regions in subarctic Alaska showed a reduction in area of between 4 and 31 percent, with most of the change occurring since the 1970s. The ponds in the Arctic Coastal Plain showed negligible change.

Marie Gilbert | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>