Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Trapped wave' caused unexpected Dennis surge

11.10.2006
NOAA finding leads to improved Gulf Coast storm surge predictions

When Hurricane Dennis passed North Florida on July 10, 2005, it caused a 10-foot storm surge in some areas along Apalachee Bay -- about 3 to 4 feet more than forecasted-- that couldn't be explained only by the local winds that conventionally drive storm surge.

Now, scientists at Florida State University and the National Oceanic and Atmospheric Administration have found that the surge in Apalachee Bay was amplified by a "trapped wave" that originated off the southwest Florida coast. The discovery of this previously undocumented storm surge phenomenon has changed how NOAA's National Hurricane Center prepares storm surge models for the Gulf of Mexico. New modeling procedures will help improve the accuracy of storm surge forecasts for the entire Gulf coast from Florida to Texas.

Scientists Steven Morey, Mark Bourassa, Dmitry Dukhovskoy and James O'Brien of FSU's Center for Ocean Atmospheric Prediction Studies and Stephen Baig of NOAA's Tropical Prediction Center of the National Hurricane Center drew their conclusions after conducting numerical experiments with storm surge models. Their research was published in the Oct. 4 issue of the journal Geophysical Research Letters.

Hurricane Dennis formed from a tropical depression that originated near the southern Windward Islands on July 4, 2005. It strengthened as it traveled northwest through the Caribbean Sea until it made landfall in Cuba as a Category 4 hurricane. It then traveled west of the Florida Shelf, and the storm's maximum sustained winds weakened to 54 mph before it made landfall on the western Florida Panhandle.

"Winds from Dennis forced water against the southwestern Florida coast creating a bulge of high sea level from Naples to around Tampa," Morey explained. "Oceanographers know that this 'bulge' will form a long wave that, in the Northern Hemisphere, will travel as a wave with the coast to the right. Because Dennis traveled nearly parallel to the Florida Peninsula coast at the same speed as the wave, winds from Dennis amplified the wave as it traveled to Apalachee Bay."

The trapped wave then piled up on the shore along Apalachee Bay on top of the surge generated by the winds over the bay, according to O'Brien.

"To address these findings, we will use as necessary a larger geographical grid in our operational storm surge model in the Gulf of Mexico," said Baig, oceanographer and storm surge leader at NOAA's National Hurricane Center. "This will provide a more comprehensive view of a storm's potential impact in the Gulf by better accounting for the rare trapped wave effect."

This type of remotely trapped wave could play a role in future storms that follow a path similar to Hurricane Dennis or travel westward south of the Louisiana coastline toward Texas, the scientists said.

Steven Morey | EurekAlert!
Further information:
http://www.coaps.fsu.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>