Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link Discovered Between Saharan Dust Storms and Atlantic Hurricane Activity

11.10.2006
Scientists have discovered a correlation between hurricane activity in the Atlantic and thick clouds of dust that periodically rise from the Sahara Desert and blow off Africa's northwest coast.

They found that during periods of intense hurricane activity, dust was relatively scarce in the atmosphere, while in years when stronger dust storms rose up, fewer hurricanes swept across the Atlantic.

Amato Evan of the University of Wisconsin-Madison and colleagues there and at the National Oceanic and Atmospheric Administration studied 25 years of satellite data--covering 1981 to 2006--to establish the correlation. Their findings are published 10 October in Geophysical Research Letters.

"These findings are important because they show that long-term changes in hurricanes may be related to many different factors," says co-author Jonathan Foley, director of the university's Center for Sustainability and the Global Environment. "While a great deal of work has focused on the links between [hurricanes] and warming ocean temperatures, this research adds another piece to the puzzle."

Researchers have increasingly turned their attention to the environmental impact of dust, after it became clear that in some years, millions of tons of sand rise up from the Sahara Desert and float across the Atlantic Ocean, sometimes in as little as five days. If scientists conclusively prove that dust storms help to squelch hurricanes, weather forecasters could one day begin to track atmospheric dust, factoring it into their predictions for the first time, the researchers say.

"People didn't understand the potential impact of dust until satellites allowed us to see how incredibly expansive these dust storms can be," says Evan. "Sometimes during the summer, sunsets in Puerto Rico are beautiful, because of all the dust in the sky--well that dust comes all the way from Africa."

The Sahara sand rises when hot desert air collides with the cooler, dryer air of the Sahel region, just south of the Sahara, and forms wind. As particles swirl upwards, strong trade winds begin to blow them westward into the northern Atlantic. Dust storms form primarily during summer and winter months, but in some years, for reasons that are not understood, they barely form at all.

Evan decided to explore the correlations between dust and hurricane activity after his colleague and co-author Christopher Velden and others suggested that dust storms moving over the tropical North Atlantic might be able to suppress the development of hurricanes. The researchers say that this makes sense, because dry, dust-ridden layers of air probably help to "dampen" brewing hurricanes, which need heat and moisture to fuel them. That effect, Velden adds, could also mean that dust storms have the potential to shift a hurricane's direction further to the west, which means it would have a higher chance of hitting the United States and Caribbean islands.

While the current research does not establish that dust storms directly influence hurricanes, it does provide compelling evidence that the two phenomena are linked in some way. "What we don't know is whether the dust affects the hurricanes directly, or whether both [dust and hurricanes] are responding to the same large scale atmospheric changes around the tropical Atlantic," says Foley. "That's what future research needs to find out."

The study was funded by the National Oceanic and Atmospheric Administration.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>