Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Plenty of Carbon Dioxide Storage Capacity Underground in Kentucky

09.10.2006
As concern has grown over the effects of the human release of carbon dioxide (CO2) gas into the atmosphere, so too has research into technologies to manage CO2.

One such research project, overseen by geologist Brandon Nuttall at the Kentucky Geological Survey (KGS) at the University of Kentucky, has investigated the option for geologic sequestration of captured CO2 in Devonian black shales, organic-rich rocks found beneath about two thirds of Kentucky.

Geologic sequestration refers to the process of permanent underground storage of carbon dioxide captured from sources such as coal-fired power plants, cement plants, and others manufacturing plants. Widespread deposits of shale are generally thought to be the seal or cap for deeper storage reservoirs that would prevent sequestered CO2 from leaking to the surface. Injection of CO2 into black gas-producing shales may have an additional value of enhancing the recovery of natural gas.

In the three year project funded by National Energy Technology Laboratory of the U.S. Department of Energy, Nuttall determined that the deeper and thicker parts of the Devonian shales in Kentucky could provide a potentially large geologic storage reservoir for captured CO2. In fact, the extensive occurrence of shales in geologic basins across North America would make them an attractive regional reservoir for economic CO2 sequestration.

Analysis of 43 shale samples from 11 recent drilled wells in the Appalachian Basin of eastern Kentucky and the Illinois Basin in Indiana demonstrated that Devonian black shales in Kentucky could sequester as much as 28 billion tons of injected CO2. The analyses done for Nuttall’s project indicate that in the five-county Big Sandy Gas Field area of eastern Kentucky alone, 6.2 billion tons of CO2 could be sequestered.

“In the sequestration process, carbon dioxide is ‘adsorbed’ by the shales, which means the CO2 forms a molecular bond with the shale,” Nuttall says. “The shale may, in turn, ‘desorb’ natural gas when carbon dioxide is present. Natural gas fields in shaly areas are therefore considered potential candidate sites for carbon sequestration because the injection of CO2 for permanent storage may also help extract additional natural gas.”

The project’s final report, entitled “Analysis of the Devonian Black Shale in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production,” is available online at the KGS web site.

Nuttall’s Devonian shale research is continuing, in an effort to demonstrate the economic viability of the production of natural gas displaced by CO2 injection. He is working with several surrounding states on research efforts funded by the Department of Energy’s Regional Carbon Sequestration Partnerships programs, which are active nationwide. These efforts will result in a better understanding of shales as gas reservoirs, sequestration targets, and seals for deeper reservoirs.

Mike Lynch | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/KGS/emsweb/devsh/devshseq.html

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>