Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Plenty of Carbon Dioxide Storage Capacity Underground in Kentucky

09.10.2006
As concern has grown over the effects of the human release of carbon dioxide (CO2) gas into the atmosphere, so too has research into technologies to manage CO2.

One such research project, overseen by geologist Brandon Nuttall at the Kentucky Geological Survey (KGS) at the University of Kentucky, has investigated the option for geologic sequestration of captured CO2 in Devonian black shales, organic-rich rocks found beneath about two thirds of Kentucky.

Geologic sequestration refers to the process of permanent underground storage of carbon dioxide captured from sources such as coal-fired power plants, cement plants, and others manufacturing plants. Widespread deposits of shale are generally thought to be the seal or cap for deeper storage reservoirs that would prevent sequestered CO2 from leaking to the surface. Injection of CO2 into black gas-producing shales may have an additional value of enhancing the recovery of natural gas.

In the three year project funded by National Energy Technology Laboratory of the U.S. Department of Energy, Nuttall determined that the deeper and thicker parts of the Devonian shales in Kentucky could provide a potentially large geologic storage reservoir for captured CO2. In fact, the extensive occurrence of shales in geologic basins across North America would make them an attractive regional reservoir for economic CO2 sequestration.

Analysis of 43 shale samples from 11 recent drilled wells in the Appalachian Basin of eastern Kentucky and the Illinois Basin in Indiana demonstrated that Devonian black shales in Kentucky could sequester as much as 28 billion tons of injected CO2. The analyses done for Nuttall’s project indicate that in the five-county Big Sandy Gas Field area of eastern Kentucky alone, 6.2 billion tons of CO2 could be sequestered.

“In the sequestration process, carbon dioxide is ‘adsorbed’ by the shales, which means the CO2 forms a molecular bond with the shale,” Nuttall says. “The shale may, in turn, ‘desorb’ natural gas when carbon dioxide is present. Natural gas fields in shaly areas are therefore considered potential candidate sites for carbon sequestration because the injection of CO2 for permanent storage may also help extract additional natural gas.”

The project’s final report, entitled “Analysis of the Devonian Black Shale in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production,” is available online at the KGS web site.

Nuttall’s Devonian shale research is continuing, in an effort to demonstrate the economic viability of the production of natural gas displaced by CO2 injection. He is working with several surrounding states on research efforts funded by the Department of Energy’s Regional Carbon Sequestration Partnerships programs, which are active nationwide. These efforts will result in a better understanding of shales as gas reservoirs, sequestration targets, and seals for deeper reservoirs.

Mike Lynch | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/KGS/emsweb/devsh/devshseq.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>