Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Plenty of Carbon Dioxide Storage Capacity Underground in Kentucky

09.10.2006
As concern has grown over the effects of the human release of carbon dioxide (CO2) gas into the atmosphere, so too has research into technologies to manage CO2.

One such research project, overseen by geologist Brandon Nuttall at the Kentucky Geological Survey (KGS) at the University of Kentucky, has investigated the option for geologic sequestration of captured CO2 in Devonian black shales, organic-rich rocks found beneath about two thirds of Kentucky.

Geologic sequestration refers to the process of permanent underground storage of carbon dioxide captured from sources such as coal-fired power plants, cement plants, and others manufacturing plants. Widespread deposits of shale are generally thought to be the seal or cap for deeper storage reservoirs that would prevent sequestered CO2 from leaking to the surface. Injection of CO2 into black gas-producing shales may have an additional value of enhancing the recovery of natural gas.

In the three year project funded by National Energy Technology Laboratory of the U.S. Department of Energy, Nuttall determined that the deeper and thicker parts of the Devonian shales in Kentucky could provide a potentially large geologic storage reservoir for captured CO2. In fact, the extensive occurrence of shales in geologic basins across North America would make them an attractive regional reservoir for economic CO2 sequestration.

Analysis of 43 shale samples from 11 recent drilled wells in the Appalachian Basin of eastern Kentucky and the Illinois Basin in Indiana demonstrated that Devonian black shales in Kentucky could sequester as much as 28 billion tons of injected CO2. The analyses done for Nuttall’s project indicate that in the five-county Big Sandy Gas Field area of eastern Kentucky alone, 6.2 billion tons of CO2 could be sequestered.

“In the sequestration process, carbon dioxide is ‘adsorbed’ by the shales, which means the CO2 forms a molecular bond with the shale,” Nuttall says. “The shale may, in turn, ‘desorb’ natural gas when carbon dioxide is present. Natural gas fields in shaly areas are therefore considered potential candidate sites for carbon sequestration because the injection of CO2 for permanent storage may also help extract additional natural gas.”

The project’s final report, entitled “Analysis of the Devonian Black Shale in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production,” is available online at the KGS web site.

Nuttall’s Devonian shale research is continuing, in an effort to demonstrate the economic viability of the production of natural gas displaced by CO2 injection. He is working with several surrounding states on research efforts funded by the Department of Energy’s Regional Carbon Sequestration Partnerships programs, which are active nationwide. These efforts will result in a better understanding of shales as gas reservoirs, sequestration targets, and seals for deeper reservoirs.

Mike Lynch | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/KGS/emsweb/devsh/devshseq.html

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>