Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Age North Atlantic temperatures, tropical oceans linked

06.10.2006
Evidence that climate change can have a rapid effect on ocean circulation

Sudden shifts in temperature over Greenland and tropical rainfall patterns during the last ice age have been linked for the first time to rapid changes in the salinity of the north Atlantic Ocean, according to research published Oct. 5 in the journal Nature. The results provide further evidence that climate change can have a direct and rapid impact on ocean circulation and chemistry.

"It's a very complicated system," said lead author Matthew Schmidt, who carried out the work as a graduate student at the University of California, Davis, and is now a visiting NOAA Climate and Global Change Postdoctoral Fellow at the Georgia Institute of Technology. "But when it responds, it responds big time."

Schmidt, Maryline Vautravers of Cambridge University in England, and Howard Spero, professor of geology at UC Davis, reconstructed a 45,000-to-60,000-year-old record of ocean temperature and salinity from the chemical traces in fossil shells of tiny planktonic animals recovered from deep sea sediment cores. They compared their results to the record of abrupt climate change recorded in ice cores from Greenland.

At that time, much of North America and Europe was a frigid sheet of ice. But the ice records show repeated patterns of sudden warming, called Dansgaard-Oeschger cycles, when temperatures in Greenland rose by five to 10 degrees Celsius over a few decades.

Those cycles were matched by rapid changes in surface-water salinity in the north Atlantic, the researchers found. The Atlantic got saltier during cold periods, and fresher during warm intervals. The freshening likely reflects shifts in rainfall patterns, mostly in the tropics, Spero said.

"Suddenly, we're looking at a record that links moisture balance in the tropics to climate change," he said.

Close to the tropics, warm, moist air forms a zone of heavy tropical rainfall, called the Intertropical Convergence Zone, which dilutes the salty ocean with fresh water. Today, the tropical rainfall zone reaches into the northern Caribbean, but during the colder periods of the ice age it was pushed much farther south, toward Brazil. That kept fresh water out of the northern Atlantic, so it became more salty, Spero said.

"The most striking thing is that a measurable transition is happening over decades," Spero said.

The circulation, or gyre, in the north Atlantic moves warm, salty water north, keeping Europe relatively temperate. The deep ocean circulation is very sensitive to the saltiness of north Atlantic surface waters, Spero said. Warming climate, higher rainfall and fresher conditions can alter the circulation. During glacial times, reduced circulation caused climate to cool.

The new paper shows that as the climate cooled in Greenland, salinity rapidly increased in the North Atlantic subtropical gyre. The build-up of salt during these cold intervals when the conveyor circulation was reduced would have primed the system to quickly restart on transitions into warm intervals, Schmidt said. However, the actual trigger that caused Atlantic circulation to restart during the ice age is still unknown, he said.

Once warming began, melting ice sheets would have contributed fresh water to the Atlantic, but this would have been partly buffered by the elevated saltiness of the Atlantic.

The research looked at changes during the last ice age, when global temperatures were much lower than today. But the results show that ocean salinity is very sensitive to climate change, and could change rapidly -- over a matter of decades, Spero said.

"The salinity of the north Atlantic is the canary of the climate system," Spero said.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>