Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Age North Atlantic temperatures, tropical oceans linked

06.10.2006
Evidence that climate change can have a rapid effect on ocean circulation

Sudden shifts in temperature over Greenland and tropical rainfall patterns during the last ice age have been linked for the first time to rapid changes in the salinity of the north Atlantic Ocean, according to research published Oct. 5 in the journal Nature. The results provide further evidence that climate change can have a direct and rapid impact on ocean circulation and chemistry.

"It's a very complicated system," said lead author Matthew Schmidt, who carried out the work as a graduate student at the University of California, Davis, and is now a visiting NOAA Climate and Global Change Postdoctoral Fellow at the Georgia Institute of Technology. "But when it responds, it responds big time."

Schmidt, Maryline Vautravers of Cambridge University in England, and Howard Spero, professor of geology at UC Davis, reconstructed a 45,000-to-60,000-year-old record of ocean temperature and salinity from the chemical traces in fossil shells of tiny planktonic animals recovered from deep sea sediment cores. They compared their results to the record of abrupt climate change recorded in ice cores from Greenland.

At that time, much of North America and Europe was a frigid sheet of ice. But the ice records show repeated patterns of sudden warming, called Dansgaard-Oeschger cycles, when temperatures in Greenland rose by five to 10 degrees Celsius over a few decades.

Those cycles were matched by rapid changes in surface-water salinity in the north Atlantic, the researchers found. The Atlantic got saltier during cold periods, and fresher during warm intervals. The freshening likely reflects shifts in rainfall patterns, mostly in the tropics, Spero said.

"Suddenly, we're looking at a record that links moisture balance in the tropics to climate change," he said.

Close to the tropics, warm, moist air forms a zone of heavy tropical rainfall, called the Intertropical Convergence Zone, which dilutes the salty ocean with fresh water. Today, the tropical rainfall zone reaches into the northern Caribbean, but during the colder periods of the ice age it was pushed much farther south, toward Brazil. That kept fresh water out of the northern Atlantic, so it became more salty, Spero said.

"The most striking thing is that a measurable transition is happening over decades," Spero said.

The circulation, or gyre, in the north Atlantic moves warm, salty water north, keeping Europe relatively temperate. The deep ocean circulation is very sensitive to the saltiness of north Atlantic surface waters, Spero said. Warming climate, higher rainfall and fresher conditions can alter the circulation. During glacial times, reduced circulation caused climate to cool.

The new paper shows that as the climate cooled in Greenland, salinity rapidly increased in the North Atlantic subtropical gyre. The build-up of salt during these cold intervals when the conveyor circulation was reduced would have primed the system to quickly restart on transitions into warm intervals, Schmidt said. However, the actual trigger that caused Atlantic circulation to restart during the ice age is still unknown, he said.

Once warming began, melting ice sheets would have contributed fresh water to the Atlantic, but this would have been partly buffered by the elevated saltiness of the Atlantic.

The research looked at changes during the last ice age, when global temperatures were much lower than today. But the results show that ocean salinity is very sensitive to climate change, and could change rapidly -- over a matter of decades, Spero said.

"The salinity of the north Atlantic is the canary of the climate system," Spero said.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>