Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strong Winds in Upper Stratosphere Trigger Increase in Ozone-destroying Gases

Winds circling high above the Arctic have a much greater impact on upper stratospheric ozone levels than scientists had previously thought, according to a new report.

In March 2006, the winds allowed near-record amounts of ozone- destroying gases, collectively known as nitrogen oxides or NOx, to descend some 50 kilometers [30 miles] from the mesosphere to the top of Earth's stratosphere.

NOx, is a generic term for a group of highly reactive gases, all of which contain nitrogen and oxygen in varying amounts, especially nitric oxide and nitrogen dioxide. Because NOx destroys ozone, which heats up the stratosphere by absorbing ultraviolet radiation, the naturally occurring gases could trigger atmospheric changes that could have unanticipated climate consequences, according to Cora Randall of the University of Colorado at Boulder, lead author of the study.

In February 2006, winds in the polar upper stratospheric vortex, a massive winter low-pressure system that confines air over the Arctic region, sped up to rival the strongest such winds on record, said Randall. The only time more nitrogen oxides were observed in the upper stratosphere was in the winter of 2003-2004, when huge solar storms bombarded the region with energetic particles, triggering up to a 60 percent reduction in ozone molecules, said Randall.

"We knew strong winds would lead to more NOx in the stratosphere if there were solar storms, but seeing that much NOx come down into the stratosphere when the Sun was essentially quiet was amazing,” Randall said. Her paper on the subject was published 27 September in Geophysical Research Letters, published by the American Geophysical Union. Researchers from the University of Waterloo in Ontario, Canada, and the University of Michigan, as well as the University of Colorado participated in the study.

The upper stratosphere lies several kilometers [miles] higher than the ozone hole of the lower stratosphere, which is caused by man- made gases, including chlorine and bromine, which gobble up ozone molecules. Because there is significantly less ozone in the upper stratosphere, the ozone-destroying nitrogen oxide gases are unlikely to cause immediate health threats, such as increases in skin cancer, Randall said.

The destructive NOx gases, created above the stratosphere when sunlight or energetic particles break apart oxygen and nitrogen molecules, appear to be important players in controlling the temperature of Earth's middle atmosphere, according to Randall. "If human-induced climate change leads to changes in the strength of the polar vortex, which is what scientists predict, we'll likely see changes in the amount of NOx descending into the stratosphere,” she said. "If that happens, more stratospheric NOx might become the rule rather than the exception."

"The atmosphere is part of a coupled system, and what affects one layer of the atmosphere can influence other layers in surprising ways," Randall said. "We will only be able to predict and understand the consequences of human activities if we study the entire system as a whole, and not just in parts."

The 2006 increases of NOx in the upper stratosphere occurred over the Arctic and the northern areas of North America and Europe, according to the paper's authors. The research team used data from Canadian and United States satellites, including the Canadian Atmospheric Chemistry Experiment.

The work was funded by NASA and the Canadian Space Agency.

Harvey Leifert | AGU
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>