Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong Winds in Upper Stratosphere Trigger Increase in Ozone-destroying Gases

29.09.2006
Winds circling high above the Arctic have a much greater impact on upper stratospheric ozone levels than scientists had previously thought, according to a new report.

In March 2006, the winds allowed near-record amounts of ozone- destroying gases, collectively known as nitrogen oxides or NOx, to descend some 50 kilometers [30 miles] from the mesosphere to the top of Earth's stratosphere.

NOx, is a generic term for a group of highly reactive gases, all of which contain nitrogen and oxygen in varying amounts, especially nitric oxide and nitrogen dioxide. Because NOx destroys ozone, which heats up the stratosphere by absorbing ultraviolet radiation, the naturally occurring gases could trigger atmospheric changes that could have unanticipated climate consequences, according to Cora Randall of the University of Colorado at Boulder, lead author of the study.

In February 2006, winds in the polar upper stratospheric vortex, a massive winter low-pressure system that confines air over the Arctic region, sped up to rival the strongest such winds on record, said Randall. The only time more nitrogen oxides were observed in the upper stratosphere was in the winter of 2003-2004, when huge solar storms bombarded the region with energetic particles, triggering up to a 60 percent reduction in ozone molecules, said Randall.

"We knew strong winds would lead to more NOx in the stratosphere if there were solar storms, but seeing that much NOx come down into the stratosphere when the Sun was essentially quiet was amazing,” Randall said. Her paper on the subject was published 27 September in Geophysical Research Letters, published by the American Geophysical Union. Researchers from the University of Waterloo in Ontario, Canada, and the University of Michigan, as well as the University of Colorado participated in the study.

The upper stratosphere lies several kilometers [miles] higher than the ozone hole of the lower stratosphere, which is caused by man- made gases, including chlorine and bromine, which gobble up ozone molecules. Because there is significantly less ozone in the upper stratosphere, the ozone-destroying nitrogen oxide gases are unlikely to cause immediate health threats, such as increases in skin cancer, Randall said.

The destructive NOx gases, created above the stratosphere when sunlight or energetic particles break apart oxygen and nitrogen molecules, appear to be important players in controlling the temperature of Earth's middle atmosphere, according to Randall. "If human-induced climate change leads to changes in the strength of the polar vortex, which is what scientists predict, we'll likely see changes in the amount of NOx descending into the stratosphere,” she said. "If that happens, more stratospheric NOx might become the rule rather than the exception."

"The atmosphere is part of a coupled system, and what affects one layer of the atmosphere can influence other layers in surprising ways," Randall said. "We will only be able to predict and understand the consequences of human activities if we study the entire system as a whole, and not just in parts."

The 2006 increases of NOx in the upper stratosphere occurred over the Arctic and the northern areas of North America and Europe, according to the paper's authors. The research team used data from Canadian and United States satellites, including the Canadian Atmospheric Chemistry Experiment.

The work was funded by NASA and the Canadian Space Agency.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>