Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong Winds in Upper Stratosphere Trigger Increase in Ozone-destroying Gases

29.09.2006
Winds circling high above the Arctic have a much greater impact on upper stratospheric ozone levels than scientists had previously thought, according to a new report.

In March 2006, the winds allowed near-record amounts of ozone- destroying gases, collectively known as nitrogen oxides or NOx, to descend some 50 kilometers [30 miles] from the mesosphere to the top of Earth's stratosphere.

NOx, is a generic term for a group of highly reactive gases, all of which contain nitrogen and oxygen in varying amounts, especially nitric oxide and nitrogen dioxide. Because NOx destroys ozone, which heats up the stratosphere by absorbing ultraviolet radiation, the naturally occurring gases could trigger atmospheric changes that could have unanticipated climate consequences, according to Cora Randall of the University of Colorado at Boulder, lead author of the study.

In February 2006, winds in the polar upper stratospheric vortex, a massive winter low-pressure system that confines air over the Arctic region, sped up to rival the strongest such winds on record, said Randall. The only time more nitrogen oxides were observed in the upper stratosphere was in the winter of 2003-2004, when huge solar storms bombarded the region with energetic particles, triggering up to a 60 percent reduction in ozone molecules, said Randall.

"We knew strong winds would lead to more NOx in the stratosphere if there were solar storms, but seeing that much NOx come down into the stratosphere when the Sun was essentially quiet was amazing,” Randall said. Her paper on the subject was published 27 September in Geophysical Research Letters, published by the American Geophysical Union. Researchers from the University of Waterloo in Ontario, Canada, and the University of Michigan, as well as the University of Colorado participated in the study.

The upper stratosphere lies several kilometers [miles] higher than the ozone hole of the lower stratosphere, which is caused by man- made gases, including chlorine and bromine, which gobble up ozone molecules. Because there is significantly less ozone in the upper stratosphere, the ozone-destroying nitrogen oxide gases are unlikely to cause immediate health threats, such as increases in skin cancer, Randall said.

The destructive NOx gases, created above the stratosphere when sunlight or energetic particles break apart oxygen and nitrogen molecules, appear to be important players in controlling the temperature of Earth's middle atmosphere, according to Randall. "If human-induced climate change leads to changes in the strength of the polar vortex, which is what scientists predict, we'll likely see changes in the amount of NOx descending into the stratosphere,” she said. "If that happens, more stratospheric NOx might become the rule rather than the exception."

"The atmosphere is part of a coupled system, and what affects one layer of the atmosphere can influence other layers in surprising ways," Randall said. "We will only be able to predict and understand the consequences of human activities if we study the entire system as a whole, and not just in parts."

The 2006 increases of NOx in the upper stratosphere occurred over the Arctic and the northern areas of North America and Europe, according to the paper's authors. The research team used data from Canadian and United States satellites, including the Canadian Atmospheric Chemistry Experiment.

The work was funded by NASA and the Canadian Space Agency.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>