Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mind the gap: Space scientists uncover causes of gap in Van Allen belts

28.09.2006
A team of British and US scientists have discovered that the gap in the Van Allen radiation belts is formed by natural wave turbulence in space, not by lightning.

The discovery settles years of controversy among space scientists about the mechanisms responsible for causing the gap and has important implications for space weather forecasting.

High above the Earth's atmosphere, energetic charged particles are trapped in the Earth's magnetic field where they form the Van Allen radiation belts. Energetic electrons, travelling close to the speed of light, occupy two doughnut shaped zones, usually separated by a gap known as the slot region.

The underlying mechanism that clears the slot region of electrons has been the subject of intense scientific debate. Now, based on analysis of wave data collected over 13 months by the CRRES satellite, Dr Nigel Meredith of British Antarctic Survey and colleagues from BAS, the University of California, Los Angeles and the University of Iowa, believe that the gap is most likely formed by natural wave turbulence in space, rather than by lightning as the alternative theory suggests. Their results are published in the Journal of Geophysical Research this week.

According to lead author, Dr Nigel Meredith:

"Last year NASA scientists suggested that lightning-generated radio waves leaking out into space are responsible for the gap between the two belts by dumping particles into the atmosphere. Since lightning occurs far more often over land than water, waves in space should also occur more over land. However, after analysing satellite data we found that there is no land-ocean variation at frequencies less than 1 kiloHertz where the waves are most intense. Instead, wave activity increases during geomagnetic disturbances driven by the Sun, suggesting that natural wave turbulence is responsible for the gap."

"The results are important, because a better understanding of the radiation belts will help modellers forecast space weather more accurately, helping to protect both astronauts and satellites from radiation hazards."

Linda Capper | EurekAlert!
Further information:
http://www.bas.ac.uk

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>