Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scientific challenges and goals for ESA's Living Planet Programme

28.09.2006
ESA announces a new science strategy for the future direction of its Living Planet Programme, addressing the continuing need to further our understanding of the Earth System and the impact that human activity is having.

The Changing Earth: New Scientific Challenges for ESA's Living Planet Programme focuses on the most fundamental challenge facing humanity at the beginning of the 21st century – that being global change. As we begin to understand more about the Earth as a system, it is very apparent that human activity is having a profound and negative impact on our environment.

For example, our understanding of carbon dioxide as a greenhouse gas, and the strong link between atmospheric carbon dioxide concentrations and temperature both point to human activity leading to a warmer world, unlike anything seen over the last million years. A better knowledge of the Earth System and the impact that increasing human activity is having is of crucial importance in providing the basis for the management of our environment and our ability to derive sustainable benefit.

Since observing the Earth from space first became possible more than forty years ago, satellite missions have become central to monitoring and learning about how the Earth works. Looking to the future, the new strategy for ESA's Living Planet Programme aims to assess the most important Earth-science questions to be addressed in the years to come. It outlines the observational challenges that these raise, and the contribution that the Agency can make through the programme. Volker Liebig, ESA Director of Earth Observation stated, “These challenges will guide ESA’s efforts in providing essential Earth-observation information to all relevant user communities, in close cooperation with our international partners.”

Underpinning the new strategy is a set of ambitious objectives, which include:

Launch a steady flow of missions addressing key issues in Earth science.

Provide an infrastructure to allow satellite data to be quickly and efficiently exploited in areas of research and applications.

Provide a unique contribution to global Earth Observation capabilities, complementing satellites operated by other agencies and in-situ observing systems.

Provide an efficient and cost-effective process whereby science priorities can be rapidly translated into space missions, adequately resourced with associated ground support.

Support the development of innovative approaches to instrumentation.

ESA has been dedicated to observing the Earth from space ever since the launch of its first meteorological mission, Meteosat, back in 1977. Following the success of this first mission, the subsequent series of Meteosat satellites developed by ESA and operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), together with ERS-1, ERS-2 and Envisat have been providing us with a wealth of invaluable data about the Earth, its climate and changing environment.

Since its conception in the 1990s, ESA's Living Planet Programme has grown to include the family of Earth Explorers, the well-established meteorological missions and the development of the space component for GMES (Global Monitoring for Environment and Security), which is a joint initiative between the European Commission and ESA.

When the Living Planet Programme was first established a new approach to satellite observations for Earth science was formed by focusing on the missions being defined, developed and operated in close cooperation with the science community. By involving the science community right from the beginning in the definition of new missions and introducing a peer-reviewed selection process, it is ensures that a resulting mission is developed efficiently and provides the exact data required by the user. So far, this approach has resulted in the selection six Earth Explorer missions with another six currently under assessment study. Two Earth Explorer satellites are scheduled for launch next year – GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) and SMOS (Soil Moisture and Ocean Salinity).

While the Earth Explorer series forms the science and research element of the Living Planet Programme the so-called Earth Watch element is designed to facilitate the delivery of Earth-observation data for use in operational services. Earth Watch includes the well-established meteorological missions with EUMETSAT and new missions focusing on the environment and civil security under GMES. Within this element of the programme, the MetOp mission, which was jointly established by ESA and EUMETSAT, will be Europe's first polar-orbiting weather satellite when it is launched in October.

Although the Earth Watch element of the programme is designed to provide data that underpins operational services, it will also contribute significantly to Earth science, in particular through the collection of longer time series of observations than those provided by research missions. In turn, the Earth Explorers will provide new understanding that paves the way for new operational services. This synergy is also highlighted in the Living Planet Programme's strategy for the coming years.

With the Living Planet Programme's new strategy in place, ESA will build on past success by continuing to play a central role in developing the global capacity to understand planet Earth, predict environmental changes and help mitigate the negative effects of global change on the population.

Einar-Arne Herland | alfa
Further information:
http://www.esa.int/esaLP/SEM84CVHESE_index_0.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>