Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lucky find off Galapagos

26.09.2006
Ocean scientists discover how bacteria produce propane in the deep seafloor

During an expedition off the South American coast, an international team of ocean scientists discovered that the gases ethane and propane are widespread, and are being produced by microorganisms in deeply buried sediments.

Prof. Kai-Uwe Hinrichs (Research Center Ocean Margins, University of Bremen), co-author Prof. John Hayes (Woods Hole Oceanographic Institution), and colleagues report new findings on the production of energy-laden gases in a paper in this week's online edition of the renowned Proceedings of the National Academy of Sciences of the U.S.A. (PNAS). The findings suggest that microbes in the deeply buried, vast ecosystem below the seafloor carry out hitherto unrecognized processes, which are highly relevant to both our understanding of global element cycles and the metabolic abilities of Earth's microbial biosphere.

"In a way, the finding was coincidental," Hinrichs states. Onboard the research drilling vessel JOIDES Resolution, the geochemist, now at the University of Bremen but then at Woods Hole Oceanographic Institution (WHOI), analyzed the gases in sediments buried up to 400 meters in the Equatorial Pacific off Peru. "We were swamped with samples: in nearly a thousand samples of up to 40 million-year-old sediment, we analyzed the gas content." Despite work shifts of up to 14 hours, the shipboard scientists soon had a backlog of unanalyzed samples, which turned out to be lucky. "When we later looked at the samples, we noticed that concentrations of ethane and propane were suspiciously high," Hinrichs adds. Soon the scientists realized that these gases were not artifacts or contaminants, but that they must have slowly escaped from the sediment.

The researchers began to wonder how to account for the presence of these gases. Normally, ethane and propane are known as typical products of fossil fuel generation at elevated temperatures and pressure, without direct involvement of microbes. In the PNAS article, the team argues that microbes played a key role in the formation of these hydrocarbons.

"Sediments contain organic material (the fossil remnant of oceanic plants and animals)," Hinrichs explains. "This material, a key ingredient in the carbon cycle, is the major food used by the deep biosphere. During its decomposition by microbes, acetate--the ionic form of acetic acid--is formed. We think that bacteria use hydrogen to convert acetate into ethane. Addition of inorganic carbon and hydrogen provides a route to propane."

In support of their hypothesis for a biological origin of the gases, the researchers point to several clues: "First, the sampling locations are remote from reservoirs of oil and natural gas, so that this source can be eliminated," Hinrichs says. "Moreover, the abundance of stable isotopes of carbon are markedly different from those in gases formed at high temperature," adds co-author John Hayes, a geochemist at Woods Hole Oceanographic Institution (WHOI).

Co-author Wolfgang Bach, geochemist and professor at the Bremer Research Center points out, "We also were able to demonstrate that under the conditions prevailing at depth, these processes could yield just enough energy for growth of bacterial communities."

The paper leads to several new questions that will be addressed in future work. In a current PhD project in the Organic Geochemistry Group at the Research Center Ocean Margins, experiments are being conducted to locate the sedimentary sites where the gases are hidden. "Interlayer spaces of clay minerals are the best candidates right now," Hinrichs says. Other experiments are currently being designed to find out more about how the gases are being formed. He adds, "One important goal right now is to study these processes under controlled conditions in the lab to verify or refine the proposed mechanism." Hinrichs knows that it may not be easy to simulate processes from the deep biosphere, but the geochemist hopes to identify and replicate the conditions needed to stimulate the microbes to produce a lot of these energy carriers.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>