Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lucky find off Galapagos

26.09.2006
Ocean scientists discover how bacteria produce propane in the deep seafloor

During an expedition off the South American coast, an international team of ocean scientists discovered that the gases ethane and propane are widespread, and are being produced by microorganisms in deeply buried sediments.

Prof. Kai-Uwe Hinrichs (Research Center Ocean Margins, University of Bremen), co-author Prof. John Hayes (Woods Hole Oceanographic Institution), and colleagues report new findings on the production of energy-laden gases in a paper in this week's online edition of the renowned Proceedings of the National Academy of Sciences of the U.S.A. (PNAS). The findings suggest that microbes in the deeply buried, vast ecosystem below the seafloor carry out hitherto unrecognized processes, which are highly relevant to both our understanding of global element cycles and the metabolic abilities of Earth's microbial biosphere.

"In a way, the finding was coincidental," Hinrichs states. Onboard the research drilling vessel JOIDES Resolution, the geochemist, now at the University of Bremen but then at Woods Hole Oceanographic Institution (WHOI), analyzed the gases in sediments buried up to 400 meters in the Equatorial Pacific off Peru. "We were swamped with samples: in nearly a thousand samples of up to 40 million-year-old sediment, we analyzed the gas content." Despite work shifts of up to 14 hours, the shipboard scientists soon had a backlog of unanalyzed samples, which turned out to be lucky. "When we later looked at the samples, we noticed that concentrations of ethane and propane were suspiciously high," Hinrichs adds. Soon the scientists realized that these gases were not artifacts or contaminants, but that they must have slowly escaped from the sediment.

The researchers began to wonder how to account for the presence of these gases. Normally, ethane and propane are known as typical products of fossil fuel generation at elevated temperatures and pressure, without direct involvement of microbes. In the PNAS article, the team argues that microbes played a key role in the formation of these hydrocarbons.

"Sediments contain organic material (the fossil remnant of oceanic plants and animals)," Hinrichs explains. "This material, a key ingredient in the carbon cycle, is the major food used by the deep biosphere. During its decomposition by microbes, acetate--the ionic form of acetic acid--is formed. We think that bacteria use hydrogen to convert acetate into ethane. Addition of inorganic carbon and hydrogen provides a route to propane."

In support of their hypothesis for a biological origin of the gases, the researchers point to several clues: "First, the sampling locations are remote from reservoirs of oil and natural gas, so that this source can be eliminated," Hinrichs says. "Moreover, the abundance of stable isotopes of carbon are markedly different from those in gases formed at high temperature," adds co-author John Hayes, a geochemist at Woods Hole Oceanographic Institution (WHOI).

Co-author Wolfgang Bach, geochemist and professor at the Bremer Research Center points out, "We also were able to demonstrate that under the conditions prevailing at depth, these processes could yield just enough energy for growth of bacterial communities."

The paper leads to several new questions that will be addressed in future work. In a current PhD project in the Organic Geochemistry Group at the Research Center Ocean Margins, experiments are being conducted to locate the sedimentary sites where the gases are hidden. "Interlayer spaces of clay minerals are the best candidates right now," Hinrichs says. Other experiments are currently being designed to find out more about how the gases are being formed. He adds, "One important goal right now is to study these processes under controlled conditions in the lab to verify or refine the proposed mechanism." Hinrichs knows that it may not be easy to simulate processes from the deep biosphere, but the geochemist hopes to identify and replicate the conditions needed to stimulate the microbes to produce a lot of these energy carriers.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>