Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stratospheric injections could help cool Earth, computer model shows

18.09.2006
A two-pronged approach to stabilizing climate, with cuts in greenhouse gas emissions as well as injections of climate-cooling sulfates, could prove more effective than either approach used separately. This is the finding of a new study by Tom Wigley of the National Center for Atmospheric Research (NCAR), published in the September 14 issue of Science.

Wigley calculates the impact of injecting sulfate particles, or aerosols, every one to four years into the stratosphere in amounts equal to those lofted by the volcanic eruption of Mt. Pintabuto in 1991. If found to be environmentally and technologically viable, such injections could provide a "grace period" of up to 20 years before major cutbacks in greenhouse gas emissions would be required, he concludes.

"A combined approach to climate stabilization has a number of advantages over either employed separately," says Wigley. His study was supported by the National Science Foundation, NCAR's primary sponsor.

The Science paper does not endorse any particular approach to reducing climate change, nor is it intended to address the many technical and political challenges involved in potential geoengineering efforts. Instead, it analyzes whether the much-discussed idea of injecting sulfates into the stratosphere could, in fact, slow down global warming and therefore provide more time for society to reduce the emissions of carbon dioxide.

If climate change were addressed only through mitigation (emissions reduction), then massive cuts in emissions would be needed in order to keep temperatures from rising more than 3.6 degrees Fahrenheit (2.0 degrees Celsius) over present levels. This amount of warming has often been cited as a benchmark of dangerous climate change.

Given the difficulties of making such massive cuts, scientists recently have begun to reexamine a variety of schemes proposed over the last few decades to reduce the impact of climate change through global-scale technological fixes. These approaches are often referred to as geoengineering. One strategy first proposed in the 1970s is to inject large amounts of sun-blocking sulfate particles into the stratosphere via aircraft or other means. The idea would be to cool the climate for a year or more with each injection, much as the largest volcanic eruptions do.

"Geoengineering could provide additional time to address the economic and technological challenges faced by a mitigation-only approach," says Wigley.

-----A model experiment with two scenarios-----

Using a computer model to track sunlight and other energy flowing into and out of the Earth system, Wigley examined two scenarios that project the impact of emissions on climate from now to the year 2400. In one scenario, total emissions would have to start dropping immediately, and would have to be cut by around 50 percent in the next 50 years, in order to keep global climate from warming by more than the 2 degrees C benchmark. An alternative scenario, the "overshoot" approach, allows a period of increasing total emissions, extending to the 2030s, before stringent cutbacks begin.

To see how geoengineering might change this picture, Wigley took the overshoot scenario and added three frequencies of Pinatubo-scale injections of sulfates into the stratosphere. The frequencies were equivalent to an eruption every year, every two years, and every four years. In all three cases, global temperature stayed approximately constant for the next 40 to 50 years. After 2050, the cumulative effect of greenhouse gases produced a slow temperature rise, though it was muted by the injections.

Injections on a scale equal to Pinatubo were examined because that volcanic eruption did not seriously disrupt the climate system beyond a short-term cooling, says Wigley.

-----No panacea-----

Geoengineering is not a panacea, Wigley notes. For example, carbon dioxide from fossil fuel burning has led to an increased acidification of Earth's oceans. Even if geoengineering could help limit global warming, the oceans would continue to acidify as greenhouse-gas emissions climb, threatening certain marine ecosystems.

Mitigation alone can potentially solve both the warming and ocean acidification problems, but it has its own set of difficulties, says Wigley. The rapid emissions reductions required to keep below the 2 degree C warming threshold would be costly, perhaps unacceptably so, and would pose severe technological challenges.

"A relatively modest geoengineering investment could reduce the economic and technological burden on mitigation by deferring the need for immediate or near-future cuts in carbon dioxide emissions," Wigley says.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>