Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decompression-driven crystallization warms pathway for volcanic eruptions

11.09.2006
Mount St. Helens data will improve volcanic monitoring worldwide

The reason may be counter-intuitive, but the more magma crystallizes, the hotter it gets and the more likely a volcano will erupt, according to a team of scientists that includes a University of Oregon geologist. The knowledge likely will aid monitoring of conditions at Mount St. Helens and other volcanic hot spots around the world.

Reporting in the Sept. 7 issue of the journal Nature, the researchers show that rapid crystallization of magma within one to two kilometers of the surface (about one-half to one mile) causes magma to heat up to as much as 100 degrees Celsius (212 degrees Fahrenheit).

"While this sort of heating has been expected in theory, we are the first to show that we can measure it," said Katharine Cashman, a professor of geologic sciences at the University of Oregon. "These results have important consequences for models of magma ascent beneath volcanoes, as increasing the melt temperatures causes the melt viscosity to decrease so that it can flow more easily, like heating up a jar of honey to allow the honey to flow out of the jar."

Explosive volcanic eruptions are fueled by the escape of volcanic gases from magma stored in underground reservoirs and pipes several kilometers below the surface. Predicting such eruptions requires a real-time knowledge of just where the magma is at any one time and what it is doing.

"This work is now being used to gauge the direction of the volcanic activity currently happening at Mount St. Helens and could be applied to any active volcano for which monitoring and petrological records are available," said Jon Blundy, professor of earth sciences at the University of Bristol (United Kingdom), in a news release.

Cashman and Blundy have now collaborated since 1998, when Blundy took a sabbatical at the University of Oregon, on four published studies on Mount St. Helens, located 53 miles northeast of Portland, Ore. Cashman has studied the volcano and similar ones elsewhere for more than a decade.

The latest study was a follow-up to one Blundy and Cashman published in Geology last year (October 2005), in which they used small pockets of melt that get trapped in crystals as they expand to demonstrate that the crystals grow by decompression as magma rises toward the surface. That paper also showed that these crystals grow rapidly, in months rather than years. The new study refined their conclusions in Geology by using experimental calibrations to show the rapid heating as magma nears the surface.

"This may sound counter-intuitive, but think about the need to add heat to something to melt it," Cashman said.

In this follow-up study to last year's report, the researchers were able to reconstruct changes in pressure, temperature and crystallization that occur in magma before an eruption. They showed that as pressure decreases, crystallinity increases; the more magma crystallizes, the hotter it gets.

The finding that a drop in pressure rather than a loss of heat to surrounding rocks, as previously thought, means that there are more possibilities for eruption dynamics, the researchers concluded.

If ascending magma is able to heat itself up simply by crystallizing, they report, it may provide an important trigger for eruption without the need to invoke an extraneous heat source such as a shot of hotter magma from deep below the surface. The new findings also suggest the possibility that volcanic crystals grow in response to decompression by heating on an unexpectedly short timescale of several years, a period during which volcanoes can be more effectively monitored.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>