Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decompression-driven crystallization warms pathway for volcanic eruptions

11.09.2006
Mount St. Helens data will improve volcanic monitoring worldwide

The reason may be counter-intuitive, but the more magma crystallizes, the hotter it gets and the more likely a volcano will erupt, according to a team of scientists that includes a University of Oregon geologist. The knowledge likely will aid monitoring of conditions at Mount St. Helens and other volcanic hot spots around the world.

Reporting in the Sept. 7 issue of the journal Nature, the researchers show that rapid crystallization of magma within one to two kilometers of the surface (about one-half to one mile) causes magma to heat up to as much as 100 degrees Celsius (212 degrees Fahrenheit).

"While this sort of heating has been expected in theory, we are the first to show that we can measure it," said Katharine Cashman, a professor of geologic sciences at the University of Oregon. "These results have important consequences for models of magma ascent beneath volcanoes, as increasing the melt temperatures causes the melt viscosity to decrease so that it can flow more easily, like heating up a jar of honey to allow the honey to flow out of the jar."

Explosive volcanic eruptions are fueled by the escape of volcanic gases from magma stored in underground reservoirs and pipes several kilometers below the surface. Predicting such eruptions requires a real-time knowledge of just where the magma is at any one time and what it is doing.

"This work is now being used to gauge the direction of the volcanic activity currently happening at Mount St. Helens and could be applied to any active volcano for which monitoring and petrological records are available," said Jon Blundy, professor of earth sciences at the University of Bristol (United Kingdom), in a news release.

Cashman and Blundy have now collaborated since 1998, when Blundy took a sabbatical at the University of Oregon, on four published studies on Mount St. Helens, located 53 miles northeast of Portland, Ore. Cashman has studied the volcano and similar ones elsewhere for more than a decade.

The latest study was a follow-up to one Blundy and Cashman published in Geology last year (October 2005), in which they used small pockets of melt that get trapped in crystals as they expand to demonstrate that the crystals grow by decompression as magma rises toward the surface. That paper also showed that these crystals grow rapidly, in months rather than years. The new study refined their conclusions in Geology by using experimental calibrations to show the rapid heating as magma nears the surface.

"This may sound counter-intuitive, but think about the need to add heat to something to melt it," Cashman said.

In this follow-up study to last year's report, the researchers were able to reconstruct changes in pressure, temperature and crystallization that occur in magma before an eruption. They showed that as pressure decreases, crystallinity increases; the more magma crystallizes, the hotter it gets.

The finding that a drop in pressure rather than a loss of heat to surrounding rocks, as previously thought, means that there are more possibilities for eruption dynamics, the researchers concluded.

If ascending magma is able to heat itself up simply by crystallizing, they report, it may provide an important trigger for eruption without the need to invoke an extraneous heat source such as a shot of hotter magma from deep below the surface. The new findings also suggest the possibility that volcanic crystals grow in response to decompression by heating on an unexpectedly short timescale of several years, a period during which volcanoes can be more effectively monitored.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>