Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Frozen” Natural Gas Discovered at Unexpectedly Shallow Depths Below Seafloor

24.08.2006
An international team of research scientists has reported greater knowledge of how gas hydrate deposits form in nature, subsequent to a scientific ocean-drilling expedition off Canada’s western coast. A natural geologic hazard, gas hydrate is largely natural gas, and thus, may significantly impact global climate change.

The research team, supported by the Integrated Ocean Drilling Program (IODP), published their peer-reviewed findings, "Gas Hydrate Transect Across Northern Cascadia Margin," in the Aug. 15, 2006, edition of EOS, published by the American Geophysical Union.

Contrary to established expectations of how gas hydrate deposits form, IODP expedition co-chief Michael Riedel, of McGill University, Montreal, confirms, “We found anomalous occurrences of high concentrations of gas hydrate at relatively shallow depths, 50-120 meters below the seafloor.”

The science party used the drilling facility and laboratories of the U.S. research vessel, JOIDES Resolution, on a 43-day expedition in Fall 2005 during which they retrieved core samples from a geological area known as the (northern) Cascadia Margin. Gas hydrate deposits are typically found below the seafloor in offshore locations where water depths exceed 500 meters, and in Arctic permafrost regions. Gas hydrate remains stable only under low temperature and relatively high pressure.

IODP co-chief scientist Timothy S. Collett of the U.S. Geological Survey states, “After repeatedly recovering high concentrations of gas hydrate in sand-rich layers of sediment, we’re reporting strong support for sediment grain size as a controlling factor in gas hydrate formation.” Prior to drilling, the scientists anticipated that gas hydrate would be more concentrated at deeper levels below the seafloor and more evenly distributed among the various grain sizes comprising the sediments.

The Integrated Ocean Drilling Program (IODP) is an international marine research program dedicated to advancing scientific understanding of the Earth, the deep biosphere, climate change, and Earth processes by sampling and monitoring sub-seafloor environments. IODP is supported by two lead agencies: the U.S. National Science Foundation, and Japan’s Ministry of Education, Culture, Sports, Science, and Technology. Additional support comes from a European consortium of 17 countries, the People’s Republic of China, and South Korea. U.S.-sponsored IODP drilling operations are conducted by the JOI Alliance; comprised of the Joint Oceanographic Institutions, Texas A & M University Research Foundation, and Lamont-Doherty Earth Observatory of Columbia University.

To see the list of research participants on IODP Expedition 311 to the Cascadia Margin, or to see expedition photos, go to http://iodp.tamu.edu/scienceops/expeditions/exp311.html.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>