Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Burning Northern Wetlands Release Increased Quantities of Sequestered Mercury

Climate change appears to be contributing to the waking of a toxic sleeping giant in the most northern wetlands of North America. Mercury, released into the atmosphere most prodigiously with the launching of the industrial age, falls back onto Earth and accumulates, particularly in North American wetlands.

Researchers at Michigan State University, the U.S. Geological Survey, the National Center for Atmospheric Research, and the Canadian Forest Service find that wildfires, which are becoming more frequent and intense, are unleashing this sequestered mercury at levels up to 15 times greater than previously calculated. Their report was published 19 August in Geophysical Research Letters.

"This study makes the point that while peat lands are typically viewed as very wet and stagnant places, they do burn in continental regions, especially late in the season when water tables are depressed," said Merritt Turetsky, lead author of the study. "When peat lands burn, they can release a huge amount of mercury that overwhelms regional atmospheric emissions. Our study is new in that it looks to the soil record to tell us what happens when peat soil burns, soil that has been like a sponge for mercury for a long time."

Normal atmospheric conditions naturally carry the mercury emitted from burning fossil fuel and other industry northward, where it eventually settles on land or water surfaces. The cold, wet soils of the boreal forest region in Alaska and northern Canada have been efficient in retaining, or sequestering, mercury.

"When we walk across the surface of a peat land, we are standing on many thousands of years of peat accumulation," Turetsky said. "This type of wetland is actually doing us a service. Peat lands have been storing mercury from the atmosphere since well before and during the Industrial Revolution, locking it in peat where it's not causing any biological harm, away from the food web."

In addition to industrial activity, climate change also appears to be disrupting the mercury cycle. Increasingly, northern wetlands are drying out. Forest fires are burning more frequently, more intensely, and later in the season, which Turetsky believes will make peat lands more vulnerable to fire. In May, Turetsky co-authored with Eric Kasischke of the University of Maryland another Geophysical Research Letters paper that documented recent changes in North American fires and proposed that more frequent summer droughts and severe fire weather have increased burn areas.

"We are suggesting that environmental mercury is just like a thermometer. Levels will rise in the atmosphere with climate change, but due to increasing fire activity in the north and not solely due to warming, said Jennifer Harden, soil scientist at the U.S. Geological Survey and a co-author of the study.

In the newly published paper, Turetsky and her co-authors measured the amount of mercury stored in soils and vegetation of forests and peat lands, then used historical burn areas and emission models to estimate how much of that mercury is released to the atmosphere at a regional scale during fires.

The group studied more than five years of prescribed burns and natural fires to measure the influence of burning on terrestrial mercury storage. They also sampled smoke plumes to measure atmospheric mercury levels as fires blaze.

Their findings indicate that drier conditions in northern regions will cause soil to relinquish its hold on hundreds of years of mercury accumulation, sending that mercury back into the air at levels considerably higher than previously realized.

We're talking about mercury that has been relatively harmless, trapped in peat for hundreds of years, rapidly being spewed back into the air," Turetsky said. "Some of it will fall back onto soils. Some will fall into lakes and streams where it could become toxic in food chains. Our findings show us that climate change is complex and will contribute to the pollution of food chains that are very far away from us, in remote regions of the north."

The research was funded by the U.S. Geological Survey, the National Center of Atmospheric Research (supported by the National Science Foundation), and the Electric Power Research Institute. Turetsky's work also is supported by Michigan State University's Michigan Agricultural Research Station.

Harvey Leifert | AGU
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>