Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Establishing a connection between global warming and hurricane intensity

Climate change is affecting the intensity of Atlantic hurricanes, and hurricane damage will likely continue to increase because of greenhouse warming, according to a new study. It provides for the first time a direct relationship between climate change and hurricane intensity, unlike other studies that have linked warmer oceans to a likely increase in the number of hurricanes.

James Elsner of Florida State University in Tallahassee examined the statistical connection between the average global near-surface air temperature and Atlantic sea surface temperature, comparing the two factors with hurricane intensities over the past 50 years. He found that average air temperatures during hurricane season between June and November are useful in predicting sea surface temperatures--a vital component in nourishing hurricane winds as they strengthen in warm waters--but not vice-versa. Elsner's paper is scheduled to be published 23 August in Geophysical Research Letters, a journal of the American Geophysical Union.

Several recent studies have warned that human-induced climate warming has the potential to increase the number of tropical cyclones (hurricanes), and previous research and computer models suggest that hurricane intensity would increase with increasing global mean temperatures. Others, however, hypothesize that the relationship between sea surface temperatures and hurricanes can be attributed to natural causes, such as the Atlantic Multidecadal Oscillation, an ongoing series of long-term changes in the sea surface temperature of the North Atlantic Ocean.

"The large increases in powerful hurricanes over the past several decades, together with the results presented here, certainly suggest cause for concern," Elsner said. "These results have serious implications for life and property throughout the Caribbean, Mexico, and portions of the United States."

Using highly detailed data from the Intergovernmental Panel on Climate Change (IPCC) and the National Oceanographic and Atmospheric Administration (NOAA) to monitor sea temperature anomalies over the past half-century, Elsner used a causality test to establish evidence in support of the climate change/hurricane intensity hypothesis. His analysis helps provide verification of a linkage between atmospheric warming caused largely by greenhouse gases and the recent upswing in frequency and intensity of Atlantic hurricanes, including Katrina and Rita, which devastated parts of Mississippi, Louisiana, and Texas in 2005.

"I infer that future hurricane hazard mitigation efforts should reflect that hurricane damage will continue to increase, in part, due to greenhouse warming," Elsner said. "This research is important to the field of hurricane science by moving the debate away from trend analyses of hurricane counts and toward a physical mechanism that can account for the various observations."

The research was funded by the National Science Foundation and the Risk Prediction Initiative of the Bermuda Biological Station for Research.

Harvey Leifert | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>