Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Establishing a connection between global warming and hurricane intensity

15.08.2006
Climate change is affecting the intensity of Atlantic hurricanes, and hurricane damage will likely continue to increase because of greenhouse warming, according to a new study. It provides for the first time a direct relationship between climate change and hurricane intensity, unlike other studies that have linked warmer oceans to a likely increase in the number of hurricanes.

James Elsner of Florida State University in Tallahassee examined the statistical connection between the average global near-surface air temperature and Atlantic sea surface temperature, comparing the two factors with hurricane intensities over the past 50 years. He found that average air temperatures during hurricane season between June and November are useful in predicting sea surface temperatures--a vital component in nourishing hurricane winds as they strengthen in warm waters--but not vice-versa. Elsner's paper is scheduled to be published 23 August in Geophysical Research Letters, a journal of the American Geophysical Union.

Several recent studies have warned that human-induced climate warming has the potential to increase the number of tropical cyclones (hurricanes), and previous research and computer models suggest that hurricane intensity would increase with increasing global mean temperatures. Others, however, hypothesize that the relationship between sea surface temperatures and hurricanes can be attributed to natural causes, such as the Atlantic Multidecadal Oscillation, an ongoing series of long-term changes in the sea surface temperature of the North Atlantic Ocean.

"The large increases in powerful hurricanes over the past several decades, together with the results presented here, certainly suggest cause for concern," Elsner said. "These results have serious implications for life and property throughout the Caribbean, Mexico, and portions of the United States."

Using highly detailed data from the Intergovernmental Panel on Climate Change (IPCC) and the National Oceanographic and Atmospheric Administration (NOAA) to monitor sea temperature anomalies over the past half-century, Elsner used a causality test to establish evidence in support of the climate change/hurricane intensity hypothesis. His analysis helps provide verification of a linkage between atmospheric warming caused largely by greenhouse gases and the recent upswing in frequency and intensity of Atlantic hurricanes, including Katrina and Rita, which devastated parts of Mississippi, Louisiana, and Texas in 2005.

"I infer that future hurricane hazard mitigation efforts should reflect that hurricane damage will continue to increase, in part, due to greenhouse warming," Elsner said. "This research is important to the field of hurricane science by moving the debate away from trend analyses of hurricane counts and toward a physical mechanism that can account for the various observations."

The research was funded by the National Science Foundation and the Risk Prediction Initiative of the Bermuda Biological Station for Research.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>