Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Establishing a connection between global warming and hurricane intensity

15.08.2006
Climate change is affecting the intensity of Atlantic hurricanes, and hurricane damage will likely continue to increase because of greenhouse warming, according to a new study. It provides for the first time a direct relationship between climate change and hurricane intensity, unlike other studies that have linked warmer oceans to a likely increase in the number of hurricanes.

James Elsner of Florida State University in Tallahassee examined the statistical connection between the average global near-surface air temperature and Atlantic sea surface temperature, comparing the two factors with hurricane intensities over the past 50 years. He found that average air temperatures during hurricane season between June and November are useful in predicting sea surface temperatures--a vital component in nourishing hurricane winds as they strengthen in warm waters--but not vice-versa. Elsner's paper is scheduled to be published 23 August in Geophysical Research Letters, a journal of the American Geophysical Union.

Several recent studies have warned that human-induced climate warming has the potential to increase the number of tropical cyclones (hurricanes), and previous research and computer models suggest that hurricane intensity would increase with increasing global mean temperatures. Others, however, hypothesize that the relationship between sea surface temperatures and hurricanes can be attributed to natural causes, such as the Atlantic Multidecadal Oscillation, an ongoing series of long-term changes in the sea surface temperature of the North Atlantic Ocean.

"The large increases in powerful hurricanes over the past several decades, together with the results presented here, certainly suggest cause for concern," Elsner said. "These results have serious implications for life and property throughout the Caribbean, Mexico, and portions of the United States."

Using highly detailed data from the Intergovernmental Panel on Climate Change (IPCC) and the National Oceanographic and Atmospheric Administration (NOAA) to monitor sea temperature anomalies over the past half-century, Elsner used a causality test to establish evidence in support of the climate change/hurricane intensity hypothesis. His analysis helps provide verification of a linkage between atmospheric warming caused largely by greenhouse gases and the recent upswing in frequency and intensity of Atlantic hurricanes, including Katrina and Rita, which devastated parts of Mississippi, Louisiana, and Texas in 2005.

"I infer that future hurricane hazard mitigation efforts should reflect that hurricane damage will continue to increase, in part, due to greenhouse warming," Elsner said. "This research is important to the field of hurricane science by moving the debate away from trend analyses of hurricane counts and toward a physical mechanism that can account for the various observations."

The research was funded by the National Science Foundation and the Risk Prediction Initiative of the Bermuda Biological Station for Research.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>