Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient bison teeth provide window on past Great Plains climate, vegetation

09.08.2006
A University of Washington researcher has devised a way to use the fossil teeth of ancient bison as a tool to reconstruct historic climate and vegetation changes in America's breadbasket, the Great Plains.

The teeth hold evidence of the type of vegetation that grew in a particular location at a particular time, and that in turn provides information about climate fluctuations occurring on the plains, said Kathryn Hoppe, a UW acting assistant professor of Earth and space sciences.

"Bison eat mostly grass, so they provide a good way to measure grassland productivity," Hoppe said. "Much of the rangeland and farmland in this country was originally native grasslands, so if you want to measure how the productivity of agricultural lands has changed over time, bison seem like a good way to go."

Hoppe and colleagues Adina Paytan and Page Chamberlain of Stanford University found climate evidence in the enamel from third molars of bison, the equivalent to human wisdom teeth. Those teeth form after young bison no longer depend on mother's milk for nutrition, and so carry clearer signals of what types of grass the animals consumed.

The researchers used bison teeth collected in Montana, Wyoming, North and South Dakota, Nebraska, Kansas and Oklahoma. They pulverized enamel from tooth surfaces and dissolved samples in acid to release small amounts of carbon dioxide. Then they used a mass spectrometer to examine the ratio of the isotopes carbon-12 to carbon-13. Different grasses, those that grow in warm and cool seasons for example, have different isotope ratios.

The results provided a means to reconstruct temperature patterns for particular locations at particular times, Hoppe said. Tooth enamel also carries evidence of changes in carbon dioxide levels, which helps scientists to see how levels of that greenhouse gas changed over time.

Bison roamed North America from Alaska to Mexico going back 200,000 years. They were the most abundant herbivores following the last ice age until Europeans began to settle the continent. Because there were so many over such a large territory, Hoppe said, bison are an ideal means to study how climate and vegetation fluctuated over thousands of years.

Scientists know there have been major periods of climate change on the Great Plains numerous times in the past, typically on a much greater scale than the conditions that created the Dust Bowl in the 1930s. But questions remain about how sensitive the plains are to climate change, and how much of a change might trigger their conversion to desert.

"We know from looking at evidence of past climatic conditions that we currently are in a warm period and that climates have changed dramatically. There have been times in the past, for example, when the climate was so dry that northern Nebraska was a desert with sand dunes. The Sand Hills are a remnant of that time," Hoppe said. "The better we understand what happened in the past, the better we can predict what will happen in the future," she said.

The work also provides a way to test current climate models, she said. As scientists develop a more precise understanding of past climate, they can add those conditions as variables to see if the models correctly show what happened. If the models are successful in correctly showing past climate, there is much greater confidence that they are accurate in showing what future climate is likely to be.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>