Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient bison teeth provide window on past Great Plains climate, vegetation

09.08.2006
A University of Washington researcher has devised a way to use the fossil teeth of ancient bison as a tool to reconstruct historic climate and vegetation changes in America's breadbasket, the Great Plains.

The teeth hold evidence of the type of vegetation that grew in a particular location at a particular time, and that in turn provides information about climate fluctuations occurring on the plains, said Kathryn Hoppe, a UW acting assistant professor of Earth and space sciences.

"Bison eat mostly grass, so they provide a good way to measure grassland productivity," Hoppe said. "Much of the rangeland and farmland in this country was originally native grasslands, so if you want to measure how the productivity of agricultural lands has changed over time, bison seem like a good way to go."

Hoppe and colleagues Adina Paytan and Page Chamberlain of Stanford University found climate evidence in the enamel from third molars of bison, the equivalent to human wisdom teeth. Those teeth form after young bison no longer depend on mother's milk for nutrition, and so carry clearer signals of what types of grass the animals consumed.

The researchers used bison teeth collected in Montana, Wyoming, North and South Dakota, Nebraska, Kansas and Oklahoma. They pulverized enamel from tooth surfaces and dissolved samples in acid to release small amounts of carbon dioxide. Then they used a mass spectrometer to examine the ratio of the isotopes carbon-12 to carbon-13. Different grasses, those that grow in warm and cool seasons for example, have different isotope ratios.

The results provided a means to reconstruct temperature patterns for particular locations at particular times, Hoppe said. Tooth enamel also carries evidence of changes in carbon dioxide levels, which helps scientists to see how levels of that greenhouse gas changed over time.

Bison roamed North America from Alaska to Mexico going back 200,000 years. They were the most abundant herbivores following the last ice age until Europeans began to settle the continent. Because there were so many over such a large territory, Hoppe said, bison are an ideal means to study how climate and vegetation fluctuated over thousands of years.

Scientists know there have been major periods of climate change on the Great Plains numerous times in the past, typically on a much greater scale than the conditions that created the Dust Bowl in the 1930s. But questions remain about how sensitive the plains are to climate change, and how much of a change might trigger their conversion to desert.

"We know from looking at evidence of past climatic conditions that we currently are in a warm period and that climates have changed dramatically. There have been times in the past, for example, when the climate was so dry that northern Nebraska was a desert with sand dunes. The Sand Hills are a remnant of that time," Hoppe said. "The better we understand what happened in the past, the better we can predict what will happen in the future," she said.

The work also provides a way to test current climate models, she said. As scientists develop a more precise understanding of past climate, they can add those conditions as variables to see if the models correctly show what happened. If the models are successful in correctly showing past climate, there is much greater confidence that they are accurate in showing what future climate is likely to be.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>