Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data reveals gravity change from Sumatran earthquake

07.08.2006
For the first time, scientists have been able to use satellite data to detect the changes in the earth's surface caused by a massive earthquake.

The discovery, reported in the latest issue of the journal Science, signifies a new use for the data from NASA's two GRACE satellites and offers a possible new approach to understanding how earthquakes work.

The research paints a clearer picture of how the earth changed after the December, 2004 Sumatra-Andaman earthquake, the 9.1-magnitude temblor in the Indian Ocean which caused a deadly tsunami killing nearly 230,000 and displacing more than 1 million people.

Centered off the west coast of northern Sumatra, the event followed the slipping of two continental plates along a massive fault under the sea floor. The slippage occurred along 750 miles of the line where the Indian plate slides under the Burma plate, a process called subduction. The quake raised the seafloor in the region by several meters for thousands of square miles.

“The earthquake changed the gravity in that part of the world in two ways that we were able to detect,” explained Shin-Chan Han, a research scientist in the School of Earth Sciences at Ohio State .

First, he said, the quake triggered the massive uplift of the seafloor, changing the geometry of the region and altering previous GPS (global positioning satellite) measurements from the area. Those changes were detectable by GRACE's instruments.

And second, the density of the rock beneath the seafloor was changed after the slippage, and an increase or decrease in density produces a detectable gravity change, Han said.

The GRACE (Gravity Recovery and Climate Experiment) satellites were launched in 2002 and have been gathering global gravity measurements ever since. The identical instruments orbit some 186 to 310 miles (300 to 500 kilometers) above the planet's surface and fly 136 miles (220 kilometers) apart.

The satellites can detect changes in the density of the earth's crust, or in GPS measurements on the ground, and that can now signal changes in the planet's gravity at that point.

Along with colleagues C.K. Shum and Michael Bevis, both professors in the School of Earth Sciences, Han assembled several years of data covering the Indian Ocean region and filtered out seasonal variations. The changing flow of the massive Mekong River, for example, affects gravity measurements for the area and these annual shifts must be removed from the data to detect changes caused by a quake.

The researchers then plugged the data into the latest seismic computer model which painted a picture of gravity increases on one side of the fault line and decreases on the other.

“With this seismic model we were able to explain and interpret the GRACE observations,” Han said, adding that earthquake models are still evolving. “But the observations can also be used to validate the quality of the model itself and therefore improve our knowledge about the solid earth's dynamics.”

The detection of such quakes comes only after extensive data analysis. Real-time detection is far off in the future – if possible at all. And currently, this GRACE technique was applied to understand the mechanism of “great” earthquakes – those exceeding magnitude 9 – which are very rare events.

Detecting “major” quakes – those measuring a magnitude of 7 to 8.9 – which occur frequently is being investigated. NASA's planned extension of the current mission, dubbed GRACE 2, and its enhanced instrumentation should aid in that effort.

However, Han is hopeful that NASA's planned expansion of the current mission, dubbed GRACE 2, and its enhanced instrumentation, might allow the detection of “major” quakes – those measuring a magnitude 7 to 8.9 – which occur frequently.

Chung-Yen Kuo, a post-doctoral researcher in the School of Earth Sciences at Ohio State , and Chen Ji, an assistant professor of earth science at the University of California, Santa Barbara , both participated in the study. Support for this research came from the National Aeronautics Space Administration, the National Science Foundation and the Ohio Supercomputer Center.

Shin-Chan Han | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>