Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data reveals gravity change from Sumatran earthquake

07.08.2006
For the first time, scientists have been able to use satellite data to detect the changes in the earth's surface caused by a massive earthquake.

The discovery, reported in the latest issue of the journal Science, signifies a new use for the data from NASA's two GRACE satellites and offers a possible new approach to understanding how earthquakes work.

The research paints a clearer picture of how the earth changed after the December, 2004 Sumatra-Andaman earthquake, the 9.1-magnitude temblor in the Indian Ocean which caused a deadly tsunami killing nearly 230,000 and displacing more than 1 million people.

Centered off the west coast of northern Sumatra, the event followed the slipping of two continental plates along a massive fault under the sea floor. The slippage occurred along 750 miles of the line where the Indian plate slides under the Burma plate, a process called subduction. The quake raised the seafloor in the region by several meters for thousands of square miles.

“The earthquake changed the gravity in that part of the world in two ways that we were able to detect,” explained Shin-Chan Han, a research scientist in the School of Earth Sciences at Ohio State .

First, he said, the quake triggered the massive uplift of the seafloor, changing the geometry of the region and altering previous GPS (global positioning satellite) measurements from the area. Those changes were detectable by GRACE's instruments.

And second, the density of the rock beneath the seafloor was changed after the slippage, and an increase or decrease in density produces a detectable gravity change, Han said.

The GRACE (Gravity Recovery and Climate Experiment) satellites were launched in 2002 and have been gathering global gravity measurements ever since. The identical instruments orbit some 186 to 310 miles (300 to 500 kilometers) above the planet's surface and fly 136 miles (220 kilometers) apart.

The satellites can detect changes in the density of the earth's crust, or in GPS measurements on the ground, and that can now signal changes in the planet's gravity at that point.

Along with colleagues C.K. Shum and Michael Bevis, both professors in the School of Earth Sciences, Han assembled several years of data covering the Indian Ocean region and filtered out seasonal variations. The changing flow of the massive Mekong River, for example, affects gravity measurements for the area and these annual shifts must be removed from the data to detect changes caused by a quake.

The researchers then plugged the data into the latest seismic computer model which painted a picture of gravity increases on one side of the fault line and decreases on the other.

“With this seismic model we were able to explain and interpret the GRACE observations,” Han said, adding that earthquake models are still evolving. “But the observations can also be used to validate the quality of the model itself and therefore improve our knowledge about the solid earth's dynamics.”

The detection of such quakes comes only after extensive data analysis. Real-time detection is far off in the future – if possible at all. And currently, this GRACE technique was applied to understand the mechanism of “great” earthquakes – those exceeding magnitude 9 – which are very rare events.

Detecting “major” quakes – those measuring a magnitude of 7 to 8.9 – which occur frequently is being investigated. NASA's planned extension of the current mission, dubbed GRACE 2, and its enhanced instrumentation should aid in that effort.

However, Han is hopeful that NASA's planned expansion of the current mission, dubbed GRACE 2, and its enhanced instrumentation, might allow the detection of “major” quakes – those measuring a magnitude 7 to 8.9 – which occur frequently.

Chung-Yen Kuo, a post-doctoral researcher in the School of Earth Sciences at Ohio State , and Chen Ji, an assistant professor of earth science at the University of California, Santa Barbara , both participated in the study. Support for this research came from the National Aeronautics Space Administration, the National Science Foundation and the Ohio Supercomputer Center.

Shin-Chan Han | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>