Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD's Supercomputers Cast Light on Cloudy Puzzle of Global Weather

02.08.2006
Record heat waves, exceptionally powerful hurricanes, destructive tsunamis, and melting icecaps have many discussing the weather, but can anybody do anything about it?

The first step towards any solution is understanding the problem, and that’s where the San Diego Supercomputer Center (SDSC) – in separate collaborations with the Lawrence Livermore National Laboratory and Colorado State University – applies its heavy-duty number-crunching expertise.

With both Livermore Lab and Colorado State – recent recipient of a $19 million National Science Foundation (NSF) grant to establish a Science and Technology Center – SDSC is working to thoroughly describe and model the role of clouds and other atmospheric phenomena, with the eventual goal of accurate worldwide forecasts.

SDSC, an organized research unit of the University of California, San Diego, has partnered with Livermore since 2005 on an advanced scientific data-management project dedicated to both global climate modeling and cosmology simulations of the early universe. Tim Barnett, of UC San Diego’s Scripps Institution of Oceanography, leads the climate-modeling effort; Michael Norman leads the cosmological research at UC San Diego.

“Our work with the Livermore Lab uses global climate modeling to determine the impact of climate changes on water supply,” said Barnett. “We’ll answer the question: Can we detect a global warming signal in main hydrological features of the Western United States? This will involve making runs of global climate and downscaling models that will be unprecedented in scope.”

The collaboration with Colorado State was announced in July, with UC San Diego’s John Helly, laboratory director for earth and environmental sciences at SDSC, named co-principal investigator. That work will also be, in many ways, unprecedented.

“The characterization of clouds is a major limitation in current climate models,” Helly said, discussing the urgency of such research. “With this award, the Center for Meso-scale-modeling of Atmospheric Processes is provided the opportunity to advance the accuracy and precision of atmospheric models. SDSC will play a key role in making this problem computationally tractable, as well as in disseminating the voluminous, high-resolution model results to the research and education community.”

SDSC brings powerful tools to both partnerships. Available resources
include production data-management systems as well as development environments for creating and testing next-generation software. The production-data environment includes supercomputers, archival storage systems, high-performance disk arrays, commodity-based disk systems, data-management platforms, database platforms and advanced visualization systems. SDSC capabilities include peak 15-teraflops-capable systems, a 18-petabyte tape archive, and 1.5 petabyte on-line high-performance data-handling systems that can move data at rates from 1 to 7 gigabytes a second.

The center is a node on the Teragrid, and its hardware and software systems support the Scripps Institution of Oceanography’s SIOExplorer digital library, the Real-Time Observatories Network data grid, the NSF’s National Science Digital Library persistent archive, the Joint Center for Structural Genomics data grid, the Alliance for Cell Signaling digital library, the UC San Diego Libraries’ ArtStor image collection, and the Southern California Earthquake Center digital library, among other institutions and resources.

Can those massive computing abilities make enough sense of the unpredictable atmosphere to enable timely, and life-saving, forecasts? Scientists admit that even with today’s leading-edge resources, simulations still cannot capture the full complexity of the global-scale patterns of the weather.

But Colorado State’s David Randall, professor of atmospheric science and director of the newly funded NSF Science and Technology Center, believes his institution and the SDSC have developed a prototype model with significant promise.

“Our model allows scientists to take a two-dimensional model of a collection of clouds and apply the behavior of those clouds to each of the thousands of ‘grid columns’ of a global atmospheric model,” he said. “The project will make it possible to produce more robust simulations of both next week’s weather and future climate change.”

Fran Berman, director of the SDSC, sees great benefits to the partnerships with Livermore and Colorado State. "To understand a force as dynamic and complex as the Earth's atmosphere -- or something as ephemeral as a cloud -- today involves simulations with massive computing resources and data collections. SDSC is delighted to participate in the new Science and Technology Center with our partners, and we look forward to the new discoveries that will ensue from this collaboration."

Paul K. Mueller | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>