Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD's Supercomputers Cast Light on Cloudy Puzzle of Global Weather

02.08.2006
Record heat waves, exceptionally powerful hurricanes, destructive tsunamis, and melting icecaps have many discussing the weather, but can anybody do anything about it?

The first step towards any solution is understanding the problem, and that’s where the San Diego Supercomputer Center (SDSC) – in separate collaborations with the Lawrence Livermore National Laboratory and Colorado State University – applies its heavy-duty number-crunching expertise.

With both Livermore Lab and Colorado State – recent recipient of a $19 million National Science Foundation (NSF) grant to establish a Science and Technology Center – SDSC is working to thoroughly describe and model the role of clouds and other atmospheric phenomena, with the eventual goal of accurate worldwide forecasts.

SDSC, an organized research unit of the University of California, San Diego, has partnered with Livermore since 2005 on an advanced scientific data-management project dedicated to both global climate modeling and cosmology simulations of the early universe. Tim Barnett, of UC San Diego’s Scripps Institution of Oceanography, leads the climate-modeling effort; Michael Norman leads the cosmological research at UC San Diego.

“Our work with the Livermore Lab uses global climate modeling to determine the impact of climate changes on water supply,” said Barnett. “We’ll answer the question: Can we detect a global warming signal in main hydrological features of the Western United States? This will involve making runs of global climate and downscaling models that will be unprecedented in scope.”

The collaboration with Colorado State was announced in July, with UC San Diego’s John Helly, laboratory director for earth and environmental sciences at SDSC, named co-principal investigator. That work will also be, in many ways, unprecedented.

“The characterization of clouds is a major limitation in current climate models,” Helly said, discussing the urgency of such research. “With this award, the Center for Meso-scale-modeling of Atmospheric Processes is provided the opportunity to advance the accuracy and precision of atmospheric models. SDSC will play a key role in making this problem computationally tractable, as well as in disseminating the voluminous, high-resolution model results to the research and education community.”

SDSC brings powerful tools to both partnerships. Available resources
include production data-management systems as well as development environments for creating and testing next-generation software. The production-data environment includes supercomputers, archival storage systems, high-performance disk arrays, commodity-based disk systems, data-management platforms, database platforms and advanced visualization systems. SDSC capabilities include peak 15-teraflops-capable systems, a 18-petabyte tape archive, and 1.5 petabyte on-line high-performance data-handling systems that can move data at rates from 1 to 7 gigabytes a second.

The center is a node on the Teragrid, and its hardware and software systems support the Scripps Institution of Oceanography’s SIOExplorer digital library, the Real-Time Observatories Network data grid, the NSF’s National Science Digital Library persistent archive, the Joint Center for Structural Genomics data grid, the Alliance for Cell Signaling digital library, the UC San Diego Libraries’ ArtStor image collection, and the Southern California Earthquake Center digital library, among other institutions and resources.

Can those massive computing abilities make enough sense of the unpredictable atmosphere to enable timely, and life-saving, forecasts? Scientists admit that even with today’s leading-edge resources, simulations still cannot capture the full complexity of the global-scale patterns of the weather.

But Colorado State’s David Randall, professor of atmospheric science and director of the newly funded NSF Science and Technology Center, believes his institution and the SDSC have developed a prototype model with significant promise.

“Our model allows scientists to take a two-dimensional model of a collection of clouds and apply the behavior of those clouds to each of the thousands of ‘grid columns’ of a global atmospheric model,” he said. “The project will make it possible to produce more robust simulations of both next week’s weather and future climate change.”

Fran Berman, director of the SDSC, sees great benefits to the partnerships with Livermore and Colorado State. "To understand a force as dynamic and complex as the Earth's atmosphere -- or something as ephemeral as a cloud -- today involves simulations with massive computing resources and data collections. SDSC is delighted to participate in the new Science and Technology Center with our partners, and we look forward to the new discoveries that will ensue from this collaboration."

Paul K. Mueller | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>