Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas escaping from ocean floor may drive global warming

21.07.2006
Gas escaping from the ocean floor may provide some answers to understanding historical global warming cycles and provide information on current climate changes, according to a team of scientists at the University of California, Santa Barbara. The findings are reported in the July 20 on-line version of the scientific journal, Global Biogeochemical Cycles.

Remarkable and unexpected support for this idea occurred when divers and scientists from UC Santa Barbara observed and videotaped a massive blowout of methane from the ocean floor. It happened in an area of gas and oil seepage coming out of small volcanoes in the ocean floor of the Santa Barbara channel –– called Shane Seep –– near an area known as the Coal Oil Point seep field. The blowout sounded like a freight train, according to the divers.

Atmospheric methane is at least 20 times more potent than carbon dioxide and is the most abundant organic compound in the atmosphere, according to the study's authors, all from UC Santa Barbara.

"Other people have reported this type of methane blowout, but no one has ever checked the numbers until now," said Ira Leifer, lead author and an associate researcher with UCSB's Marine Science Institute. "Ours is the first set of numbers associated with a seep blowout." Leifer was in a research boat on the surface at the time of the blowouts.

Aside from underwater measurements, a nearby meteorological station measured the methane "cloud" that emerged as being approximately 5,000 cubic feet, or equal to the volume of the entire first floor of a two-bedroom house. The research team also had a small plane in place, flown by the California Department of Conservation, shooting video of the event from the air.

Leifer explained that when this type of blowout event occurs, virtually all the gas from the seeps escapes into the atmosphere, unlike the emission of small bubbles from the ocean floor, which partially, or mostly, dissolve in the ocean water. Transporting this methane to the atmosphere affects climate, according to the researchers. The methane blowout that the UCSB team witnessed reached the sea surface 60 feet above in just seven seconds. This was clear because the divers injected green food dye into the rising bubble plume.

Co-author Bruce Luyendyk, professor of marine geophysics and geological sciences, explained that, to understand the significance of this event (which occurred in 2002), the UCSB research team turned to a numerical, bubble-propagation model. With the model, they estimated methane loss to the ocean during the upward travel of the bubble plume.

The results showed that for this shallow seep, loss would have been approximately one percent. Virtually all the methane, 99 percent of it, was transported to the atmosphere from this shallow seep during the blowout. Next, the scientists used the model to estimate methane loss for a similar size blowout at much greater depth, 250 meters. Again, the model results showed that almost all the methane would be transported up to the atmosphere.

Over geologic time scales, global climate has cycled between warmer, interglacial periods and cooler, glacial periods. Many aspects of the forces underlying these dramatic changes remain unknown. Looking at past changes is highly relevant to understanding future climate changes, particularly given the large increase in atmospheric greenhouse gas concentrations in the atmosphere due to historically recent human activities such as burning fossil fuels.

One hypothesis, called the "Clathrate Gun" hypothesis, developed by James Kennett, professor of geological sciences at UCSB, proposes that past shifts from glacial to interglacial periods were caused by a massive decomposition of the marine methane hydrate deposits.

Methane hydrate is a form of water ice that contains a large amount of methane within its crystal structure, called a clathrate hydrate. According to Kennett's hypothesis, climatic destabilization would cause a sharp increase in atmospheric methane –– thereby initiating a feedback cycle of abrupt atmospheric warming. This process may threaten the current climate, according to the researchers. Warmer ocean temperatures from current global climate change is likely to release methane currently trapped in vast hydrate deposits on the continental shelves. However, consumption of methane by microbes in the deep sea prevents methane gas released from hydrates from reaching the ocean surface and affecting the atmosphere.

Bubbles provide a highly efficient mechanism for transporting methane and have been observed rising from many different hydrate deposits around the world. If these bubbles escape singly, most or all of their methane would dissolve into the deep-sea and never reach the atmosphere. If instead, they escape in a dense bubble plume, or in catastrophic blowout plumes, such as the one studied by UCSB researchers, then much of the methane could reach the atmosphere. Blowout seepage could explain how methane from hydrates could reach the atmosphere, abruptly triggering global warming.

Thus, these first-ever quantitative measurements of a seep blowout and the results from the numerical model demonstrate a mechanism by which methane released from hydrates can reach the atmosphere. Studies of seabed seep features suggest such events are common in the area of the Coal Oil Point seep field and very likely occur elsewhere.

The authors explain that these results show that an important piece of the global climate puzzle may be explained by understanding bubble-plume processes during blowout events. The next important step is to measure the frequency and magnitude of these events. The UCSB seep group is working toward this goal through the development of a long-term, seep observatory in active seep areas.

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>