Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas escaping from ocean floor may drive global warming

21.07.2006
Gas escaping from the ocean floor may provide some answers to understanding historical global warming cycles and provide information on current climate changes, according to a team of scientists at the University of California, Santa Barbara. The findings are reported in the July 20 on-line version of the scientific journal, Global Biogeochemical Cycles.

Remarkable and unexpected support for this idea occurred when divers and scientists from UC Santa Barbara observed and videotaped a massive blowout of methane from the ocean floor. It happened in an area of gas and oil seepage coming out of small volcanoes in the ocean floor of the Santa Barbara channel –– called Shane Seep –– near an area known as the Coal Oil Point seep field. The blowout sounded like a freight train, according to the divers.

Atmospheric methane is at least 20 times more potent than carbon dioxide and is the most abundant organic compound in the atmosphere, according to the study's authors, all from UC Santa Barbara.

"Other people have reported this type of methane blowout, but no one has ever checked the numbers until now," said Ira Leifer, lead author and an associate researcher with UCSB's Marine Science Institute. "Ours is the first set of numbers associated with a seep blowout." Leifer was in a research boat on the surface at the time of the blowouts.

Aside from underwater measurements, a nearby meteorological station measured the methane "cloud" that emerged as being approximately 5,000 cubic feet, or equal to the volume of the entire first floor of a two-bedroom house. The research team also had a small plane in place, flown by the California Department of Conservation, shooting video of the event from the air.

Leifer explained that when this type of blowout event occurs, virtually all the gas from the seeps escapes into the atmosphere, unlike the emission of small bubbles from the ocean floor, which partially, or mostly, dissolve in the ocean water. Transporting this methane to the atmosphere affects climate, according to the researchers. The methane blowout that the UCSB team witnessed reached the sea surface 60 feet above in just seven seconds. This was clear because the divers injected green food dye into the rising bubble plume.

Co-author Bruce Luyendyk, professor of marine geophysics and geological sciences, explained that, to understand the significance of this event (which occurred in 2002), the UCSB research team turned to a numerical, bubble-propagation model. With the model, they estimated methane loss to the ocean during the upward travel of the bubble plume.

The results showed that for this shallow seep, loss would have been approximately one percent. Virtually all the methane, 99 percent of it, was transported to the atmosphere from this shallow seep during the blowout. Next, the scientists used the model to estimate methane loss for a similar size blowout at much greater depth, 250 meters. Again, the model results showed that almost all the methane would be transported up to the atmosphere.

Over geologic time scales, global climate has cycled between warmer, interglacial periods and cooler, glacial periods. Many aspects of the forces underlying these dramatic changes remain unknown. Looking at past changes is highly relevant to understanding future climate changes, particularly given the large increase in atmospheric greenhouse gas concentrations in the atmosphere due to historically recent human activities such as burning fossil fuels.

One hypothesis, called the "Clathrate Gun" hypothesis, developed by James Kennett, professor of geological sciences at UCSB, proposes that past shifts from glacial to interglacial periods were caused by a massive decomposition of the marine methane hydrate deposits.

Methane hydrate is a form of water ice that contains a large amount of methane within its crystal structure, called a clathrate hydrate. According to Kennett's hypothesis, climatic destabilization would cause a sharp increase in atmospheric methane –– thereby initiating a feedback cycle of abrupt atmospheric warming. This process may threaten the current climate, according to the researchers. Warmer ocean temperatures from current global climate change is likely to release methane currently trapped in vast hydrate deposits on the continental shelves. However, consumption of methane by microbes in the deep sea prevents methane gas released from hydrates from reaching the ocean surface and affecting the atmosphere.

Bubbles provide a highly efficient mechanism for transporting methane and have been observed rising from many different hydrate deposits around the world. If these bubbles escape singly, most or all of their methane would dissolve into the deep-sea and never reach the atmosphere. If instead, they escape in a dense bubble plume, or in catastrophic blowout plumes, such as the one studied by UCSB researchers, then much of the methane could reach the atmosphere. Blowout seepage could explain how methane from hydrates could reach the atmosphere, abruptly triggering global warming.

Thus, these first-ever quantitative measurements of a seep blowout and the results from the numerical model demonstrate a mechanism by which methane released from hydrates can reach the atmosphere. Studies of seabed seep features suggest such events are common in the area of the Coal Oil Point seep field and very likely occur elsewhere.

The authors explain that these results show that an important piece of the global climate puzzle may be explained by understanding bubble-plume processes during blowout events. The next important step is to measure the frequency and magnitude of these events. The UCSB seep group is working toward this goal through the development of a long-term, seep observatory in active seep areas.

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>