Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It's 2025. Where Do Most People Live?

Researchers at the Center for Climate Systems Research (CCSR), a part of The Earth Institute, have developed a high-resolution map of projected population change for the year 2025.

The innovative map shows a world with large areas of population loss in parts of Eastern Europe and Asia, but significant gains elsewhere. see full map

A section of the new population map created by the Center for Climate Systems Research shows increasing populations in coastal areas, which will expose 2.75 billion people worldwide to the effects of sea level rise and other coastal threats posed by global warming.

The work, Mapping the Future, is the result of collaboration between CCSR, Hunter College and Population Action International (PAI) and was released this spring in conjunction with an update of PAI’s Web feature, People in the Balance, investigating the relationship between human population and critical natural resources.

The map indicates that the greatest increases in population density through 2025 are likely to occur in areas of developing countries that are already quite densely populated. In addition, the number of people living within 60 miles of a coastline is expected to increase by 35 percent over 1995 population levels, exposing 2.75 billion people worldwide to the effects of sea level rise and other coastal threats posed by global warming.

The map also projects that much of southern and Eastern Europe and Japan will experience significant and wide-spread population decline. Surprisingly, the map further suggests small areas of projected population decline for many regions in which they might be least expected: sub-Saharan Africa, Central and South America, the Philippines, Nepal, Turkey, Cambodia, Burma and Indonesia — areas that have to date been experiencing rapid-to-modest national population growth.

"By bridging these two areas of demography — mapping and long-range, aggregate projections — we're getting a better idea of where people are likely to live in the future and why," said Stuart Gaffin, associate research scientist at CCSR and lead scientist on the project. "Hopefully, work like ours will play a central role in improving environmental policies around the world and in reducing natural hazard risks faced by the most vulnerable parts of society."

Where most projections show future global population for each of more than 200 countries, Mapping the Future displays the projected population for each of nine million cells distributed across the globe. Known as "downscaling," this new arena of spatial analysis and demography is expected to be of particular interest to conservationists, climate specialists and others who need to know where people will live, and in what numbers, in coming decades and in extremely fine detail. The data may also provide a "best guess" of regional populations that might be most susceptible to natural disasters in the future.

"We already have a pretty good idea of how the population of individual countries is likely to change in coming years," said Gaffin. "This map pushes the frontier on projecting high-resolution, sub-national populations so we can begin to examine how internal population dynamics might play out against other environmental, ecological and socio-economic concerns."

To produce the map, Gaffin and his colleagues extrapolated population changes that occurred between 1990 and 1995 out to 2025 in each grid cell. They selected from two methods to arrive at the best and most likely fit consistent with the UN's "medium variant" projection for each country’s population: one based on a particular cell's changing fractional share of the overall national population and another based on the cell's share of national growth during the 1990s.

About The Earth Institute

The Earth Institute at Columbia University is the world's leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world's poor.

Ken Kostel | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>