Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's 2025. Where Do Most People Live?

20.07.2006
Researchers at the Center for Climate Systems Research (CCSR), a part of The Earth Institute, have developed a high-resolution map of projected population change for the year 2025.

The innovative map shows a world with large areas of population loss in parts of Eastern Europe and Asia, but significant gains elsewhere. see full map


A section of the new population map created by the Center for Climate Systems Research shows increasing populations in coastal areas, which will expose 2.75 billion people worldwide to the effects of sea level rise and other coastal threats posed by global warming.

The work, Mapping the Future, is the result of collaboration between CCSR, Hunter College and Population Action International (PAI) and was released this spring in conjunction with an update of PAI’s Web feature, People in the Balance, investigating the relationship between human population and critical natural resources.

The map indicates that the greatest increases in population density through 2025 are likely to occur in areas of developing countries that are already quite densely populated. In addition, the number of people living within 60 miles of a coastline is expected to increase by 35 percent over 1995 population levels, exposing 2.75 billion people worldwide to the effects of sea level rise and other coastal threats posed by global warming.

The map also projects that much of southern and Eastern Europe and Japan will experience significant and wide-spread population decline. Surprisingly, the map further suggests small areas of projected population decline for many regions in which they might be least expected: sub-Saharan Africa, Central and South America, the Philippines, Nepal, Turkey, Cambodia, Burma and Indonesia — areas that have to date been experiencing rapid-to-modest national population growth.

"By bridging these two areas of demography — mapping and long-range, aggregate projections — we're getting a better idea of where people are likely to live in the future and why," said Stuart Gaffin, associate research scientist at CCSR and lead scientist on the project. "Hopefully, work like ours will play a central role in improving environmental policies around the world and in reducing natural hazard risks faced by the most vulnerable parts of society."

Where most projections show future global population for each of more than 200 countries, Mapping the Future displays the projected population for each of nine million cells distributed across the globe. Known as "downscaling," this new arena of spatial analysis and demography is expected to be of particular interest to conservationists, climate specialists and others who need to know where people will live, and in what numbers, in coming decades and in extremely fine detail. The data may also provide a "best guess" of regional populations that might be most susceptible to natural disasters in the future.

"We already have a pretty good idea of how the population of individual countries is likely to change in coming years," said Gaffin. "This map pushes the frontier on projecting high-resolution, sub-national populations so we can begin to examine how internal population dynamics might play out against other environmental, ecological and socio-economic concerns."

To produce the map, Gaffin and his colleagues extrapolated population changes that occurred between 1990 and 1995 out to 2025 in each grid cell. They selected from two methods to arrive at the best and most likely fit consistent with the UN's "medium variant" projection for each country’s population: one based on a particular cell's changing fractional share of the overall national population and another based on the cell's share of national growth during the 1990s.

About The Earth Institute

The Earth Institute at Columbia University is the world's leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world's poor.

Ken Kostel | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>