Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science Of Ball Lightning

21.12.2001


A spectacular phenomenon



This theme issue of Philosophical Transactions A (a Royal Society journal) deals with the phenomenon of ball lightning, a rarely seen and slow-moving luminous phenomenon usually associated with thunderstorms. A collection of previously unpublished sightings is presented, including close-up encounters describing the detailed internal structure of the balls. Many of these observations are from scientifically or technically trained people, probably doubling the number of such observations available in the literature.
A particularly spectacular image of a 100 metre diameter ball observed over five minutes at night in the Australian outback is presented and available for media use.

In addition, for the first time, sufficient believable evidence from a number of high energy observations has been put together to demonstrate that ball lightning, distinctly uncoupled from any normal lightning, can be energetic enough to boil away large quantities of water.



Competing theories

The issue goes on to focus on theories to explain the phenomena; theories where the energy of the ball is tapped from the electricity of a storm and stored by chemical means to be released during the lifetime of the ball.

The issue is edited by Dr. John Abrahamson of Canterbury University in New Zealand. "Different but strongly held theories of ball lightning are a feature of this theme collection," says Dr. Abrahamson. "All can relate to the wide range of properties ascribed to ball lightning and make stimulating reading. The three main theorists, all who have also done experimental work, are David Turner (an English physical chemist based in the US), Vladimir Bychkov (a Russian physicist based in Moscow) and myself (a chemical engineer). We have all seen each other`s contributions and have commented on them to each other, with the comments sometimes inserted into the papers in this collection. This critical confrontation has forced us all to broaden our thinking and some new insights have come up in the process."

The different models presented consider hydrated ions/ water droplets, polymer threads and metal nanoparticle chains as components of ball lightning. The corresponding energy releases are through ion reactions, surface electrical discharge, and surface oxidation of metal nanoparticles.

Discussed separately are a limited number of balls which showed high energy impact on their surroundings - above that traditionally expected from chemical energy storage. These observations and others where ball lightning passed through walls and window glass have been given new interpretations consistent with the nanoparticle model. This metal oxidation model also relates closely to recently made self-heating luminous metal materials with fine porous structure, which are the topic of one of the papers.

A penetration of ball lightning into flesh with metal particle oxidation may be the explanation for observed charred limbs, and also a potential explanation for the weird "human combustion" phenomenon.

Make your own `ball lightning`

Small bodies (less than 10 mm diameter) with the properties of ball lightning can be routinely made in the laboratory. Careful laboratory observations of these from lightning-like discharges confined within eroding walls are presented. These discharges reproducibly produce freely floating and bouncing small plasmodial balls with many of the properties seen with natural ball lightning.

"The experimental work described in this issue indicate that some of the conditions necessary for production of ball lightning are understood," concludes Dr. Abrahamson. "But larger `natural-sized` laboratory examples are still being sought. I, like the other authors in this collection, am frustrated at not being able to reproduce the full phenomenon in the lab, realising that this is the acid test of any theory. In spite of this, we all regard our theories as explaining most, if not all, natural ball lightning observations, in sometimes conflicting ways!"

Tim Reynolds | alphagalileo

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>