Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science Of Ball Lightning

21.12.2001


A spectacular phenomenon



This theme issue of Philosophical Transactions A (a Royal Society journal) deals with the phenomenon of ball lightning, a rarely seen and slow-moving luminous phenomenon usually associated with thunderstorms. A collection of previously unpublished sightings is presented, including close-up encounters describing the detailed internal structure of the balls. Many of these observations are from scientifically or technically trained people, probably doubling the number of such observations available in the literature.
A particularly spectacular image of a 100 metre diameter ball observed over five minutes at night in the Australian outback is presented and available for media use.

In addition, for the first time, sufficient believable evidence from a number of high energy observations has been put together to demonstrate that ball lightning, distinctly uncoupled from any normal lightning, can be energetic enough to boil away large quantities of water.



Competing theories

The issue goes on to focus on theories to explain the phenomena; theories where the energy of the ball is tapped from the electricity of a storm and stored by chemical means to be released during the lifetime of the ball.

The issue is edited by Dr. John Abrahamson of Canterbury University in New Zealand. "Different but strongly held theories of ball lightning are a feature of this theme collection," says Dr. Abrahamson. "All can relate to the wide range of properties ascribed to ball lightning and make stimulating reading. The three main theorists, all who have also done experimental work, are David Turner (an English physical chemist based in the US), Vladimir Bychkov (a Russian physicist based in Moscow) and myself (a chemical engineer). We have all seen each other`s contributions and have commented on them to each other, with the comments sometimes inserted into the papers in this collection. This critical confrontation has forced us all to broaden our thinking and some new insights have come up in the process."

The different models presented consider hydrated ions/ water droplets, polymer threads and metal nanoparticle chains as components of ball lightning. The corresponding energy releases are through ion reactions, surface electrical discharge, and surface oxidation of metal nanoparticles.

Discussed separately are a limited number of balls which showed high energy impact on their surroundings - above that traditionally expected from chemical energy storage. These observations and others where ball lightning passed through walls and window glass have been given new interpretations consistent with the nanoparticle model. This metal oxidation model also relates closely to recently made self-heating luminous metal materials with fine porous structure, which are the topic of one of the papers.

A penetration of ball lightning into flesh with metal particle oxidation may be the explanation for observed charred limbs, and also a potential explanation for the weird "human combustion" phenomenon.

Make your own `ball lightning`

Small bodies (less than 10 mm diameter) with the properties of ball lightning can be routinely made in the laboratory. Careful laboratory observations of these from lightning-like discharges confined within eroding walls are presented. These discharges reproducibly produce freely floating and bouncing small plasmodial balls with many of the properties seen with natural ball lightning.

"The experimental work described in this issue indicate that some of the conditions necessary for production of ball lightning are understood," concludes Dr. Abrahamson. "But larger `natural-sized` laboratory examples are still being sought. I, like the other authors in this collection, am frustrated at not being able to reproduce the full phenomenon in the lab, realising that this is the acid test of any theory. In spite of this, we all regard our theories as explaining most, if not all, natural ball lightning observations, in sometimes conflicting ways!"

Tim Reynolds | alphagalileo

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>