Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science Of Ball Lightning

21.12.2001


A spectacular phenomenon



This theme issue of Philosophical Transactions A (a Royal Society journal) deals with the phenomenon of ball lightning, a rarely seen and slow-moving luminous phenomenon usually associated with thunderstorms. A collection of previously unpublished sightings is presented, including close-up encounters describing the detailed internal structure of the balls. Many of these observations are from scientifically or technically trained people, probably doubling the number of such observations available in the literature.
A particularly spectacular image of a 100 metre diameter ball observed over five minutes at night in the Australian outback is presented and available for media use.

In addition, for the first time, sufficient believable evidence from a number of high energy observations has been put together to demonstrate that ball lightning, distinctly uncoupled from any normal lightning, can be energetic enough to boil away large quantities of water.



Competing theories

The issue goes on to focus on theories to explain the phenomena; theories where the energy of the ball is tapped from the electricity of a storm and stored by chemical means to be released during the lifetime of the ball.

The issue is edited by Dr. John Abrahamson of Canterbury University in New Zealand. "Different but strongly held theories of ball lightning are a feature of this theme collection," says Dr. Abrahamson. "All can relate to the wide range of properties ascribed to ball lightning and make stimulating reading. The three main theorists, all who have also done experimental work, are David Turner (an English physical chemist based in the US), Vladimir Bychkov (a Russian physicist based in Moscow) and myself (a chemical engineer). We have all seen each other`s contributions and have commented on them to each other, with the comments sometimes inserted into the papers in this collection. This critical confrontation has forced us all to broaden our thinking and some new insights have come up in the process."

The different models presented consider hydrated ions/ water droplets, polymer threads and metal nanoparticle chains as components of ball lightning. The corresponding energy releases are through ion reactions, surface electrical discharge, and surface oxidation of metal nanoparticles.

Discussed separately are a limited number of balls which showed high energy impact on their surroundings - above that traditionally expected from chemical energy storage. These observations and others where ball lightning passed through walls and window glass have been given new interpretations consistent with the nanoparticle model. This metal oxidation model also relates closely to recently made self-heating luminous metal materials with fine porous structure, which are the topic of one of the papers.

A penetration of ball lightning into flesh with metal particle oxidation may be the explanation for observed charred limbs, and also a potential explanation for the weird "human combustion" phenomenon.

Make your own `ball lightning`

Small bodies (less than 10 mm diameter) with the properties of ball lightning can be routinely made in the laboratory. Careful laboratory observations of these from lightning-like discharges confined within eroding walls are presented. These discharges reproducibly produce freely floating and bouncing small plasmodial balls with many of the properties seen with natural ball lightning.

"The experimental work described in this issue indicate that some of the conditions necessary for production of ball lightning are understood," concludes Dr. Abrahamson. "But larger `natural-sized` laboratory examples are still being sought. I, like the other authors in this collection, am frustrated at not being able to reproduce the full phenomenon in the lab, realising that this is the acid test of any theory. In spite of this, we all regard our theories as explaining most, if not all, natural ball lightning observations, in sometimes conflicting ways!"

Tim Reynolds | alphagalileo

More articles from Earth Sciences:

nachricht Researchers reveal how microbes cope in phosphorus-deficient tropical soil
23.01.2018 | DOE/Oak Ridge National Laboratory

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>