Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science Of Ball Lightning

21.12.2001


A spectacular phenomenon



This theme issue of Philosophical Transactions A (a Royal Society journal) deals with the phenomenon of ball lightning, a rarely seen and slow-moving luminous phenomenon usually associated with thunderstorms. A collection of previously unpublished sightings is presented, including close-up encounters describing the detailed internal structure of the balls. Many of these observations are from scientifically or technically trained people, probably doubling the number of such observations available in the literature.
A particularly spectacular image of a 100 metre diameter ball observed over five minutes at night in the Australian outback is presented and available for media use.

In addition, for the first time, sufficient believable evidence from a number of high energy observations has been put together to demonstrate that ball lightning, distinctly uncoupled from any normal lightning, can be energetic enough to boil away large quantities of water.



Competing theories

The issue goes on to focus on theories to explain the phenomena; theories where the energy of the ball is tapped from the electricity of a storm and stored by chemical means to be released during the lifetime of the ball.

The issue is edited by Dr. John Abrahamson of Canterbury University in New Zealand. "Different but strongly held theories of ball lightning are a feature of this theme collection," says Dr. Abrahamson. "All can relate to the wide range of properties ascribed to ball lightning and make stimulating reading. The three main theorists, all who have also done experimental work, are David Turner (an English physical chemist based in the US), Vladimir Bychkov (a Russian physicist based in Moscow) and myself (a chemical engineer). We have all seen each other`s contributions and have commented on them to each other, with the comments sometimes inserted into the papers in this collection. This critical confrontation has forced us all to broaden our thinking and some new insights have come up in the process."

The different models presented consider hydrated ions/ water droplets, polymer threads and metal nanoparticle chains as components of ball lightning. The corresponding energy releases are through ion reactions, surface electrical discharge, and surface oxidation of metal nanoparticles.

Discussed separately are a limited number of balls which showed high energy impact on their surroundings - above that traditionally expected from chemical energy storage. These observations and others where ball lightning passed through walls and window glass have been given new interpretations consistent with the nanoparticle model. This metal oxidation model also relates closely to recently made self-heating luminous metal materials with fine porous structure, which are the topic of one of the papers.

A penetration of ball lightning into flesh with metal particle oxidation may be the explanation for observed charred limbs, and also a potential explanation for the weird "human combustion" phenomenon.

Make your own `ball lightning`

Small bodies (less than 10 mm diameter) with the properties of ball lightning can be routinely made in the laboratory. Careful laboratory observations of these from lightning-like discharges confined within eroding walls are presented. These discharges reproducibly produce freely floating and bouncing small plasmodial balls with many of the properties seen with natural ball lightning.

"The experimental work described in this issue indicate that some of the conditions necessary for production of ball lightning are understood," concludes Dr. Abrahamson. "But larger `natural-sized` laboratory examples are still being sought. I, like the other authors in this collection, am frustrated at not being able to reproduce the full phenomenon in the lab, realising that this is the acid test of any theory. In spite of this, we all regard our theories as explaining most, if not all, natural ball lightning observations, in sometimes conflicting ways!"

Tim Reynolds | alphagalileo

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>