Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flickering sun switched climate

19.12.2001


Europe’s Little Ice Age coincided with low solar activity.
Pieter Brueghel’s painting ’The Census at Bethlehem’.


A solar slump may have chilled the Northern Hemisphere.

The flickering sun may cause rapid climate change, according to a new comparison of climate records. A 200-year cold snap 10, 300 years ago seems to have coincided with a passing slump in the sun’s activity1.

Svante Bjorck of Lund University in Sweden and colleagues looked at sediments in Lake Starvatn on the Faroe Islands and in the Norwegian Sea, the width of growth rings in ancient German pine trees, and ancient ice drilled from deep within the Greenland ice sheet.



Each of these indicates how some characteristic of the environment has changed over the 11,000 or so years since the last ice age ended. The chemical composition of the ice core, for example, shows how the temperature of the atmosphere has changed. The distance between tree-rings reflects the average ambient temperature during each successive growing season.

Ice and trees show that the climate became suddenly colder about 10,300 years ago, then gradually warmed again over the ensuing century. Other records from the Californian coast and Tibet suggest that the cold snap may have been felt throughout the Northern Hemisphere, and perhaps worldwide.

Bjorck and colleagues propose that a weakening of solar activity may have caused this mini chill. It coincided, they find, with a large increase in the amount of beryllium-10 trapped in Greenland ice - evidence of a solar flicker.

This radioactive form of beryllium is produced when cosmic rays from space collide with nitrogen and oxygen atoms in the atmosphere. The magnetic field around the Earth protects the planet from cosmic rays. This field is stronger when the sun is more active - emitting more ultraviolet radiation and displaying more sunspots - so fewer cosmic rays can penetrate.

The proposed relationship between solar activity and climate change is controversial, partly because some have tried to pin modern-day global warming on it rather than on a human-induced greenhouse effect.

There is evidence, however, linking changes in solar activity to climate fluctuations in the more recent past. Abnormally high activity around AD 1100-1250, for example, has been mooted as the cause of a period of warming in medieval Europe. And the ’Little Ice Age’ between the sixteenth and eighteenth centuries coincided with a period of low solar activity.

Core values

The most pronounced climate swings, such as ice ages, happen slowly and last a long time - 100,000 years or so. Gradual, periodic changes in the shape of the Earth’s orbit around the sun are thought to trigger these larger-scale changes.

Evidence of shorter-term climate change has been observed before in ice-core records from Greenland and Antarctica. Apparently the global average temperature can switch between today’s mild climate and ice-age frigidity in just a few decades.

Sudden shifts are thought to be mostly due to ocean circulation. When ice sheets melt at the end of an ice age, the oceans get an injection of fresh water. By making seawater less salty and therefore less dense, this can suppress the conveyor-belt circulation that normally carries warm water from the tropics to the poles. Deprived of this source of heat, the high latitudes grow cold.

References

  1. Bjorck, S. et al. High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology, 29, 1107 - 1110, (2001).


PHILIP BALL | © Nature News Service

More articles from Earth Sciences:

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

nachricht 'Tiny clocks' crystallize understanding of meteorite crashes
29.05.2017 | University of Western Ontario

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>