Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flickering sun switched climate

19.12.2001


Europe’s Little Ice Age coincided with low solar activity.
Pieter Brueghel’s painting ’The Census at Bethlehem’.


A solar slump may have chilled the Northern Hemisphere.

The flickering sun may cause rapid climate change, according to a new comparison of climate records. A 200-year cold snap 10, 300 years ago seems to have coincided with a passing slump in the sun’s activity1.

Svante Bjorck of Lund University in Sweden and colleagues looked at sediments in Lake Starvatn on the Faroe Islands and in the Norwegian Sea, the width of growth rings in ancient German pine trees, and ancient ice drilled from deep within the Greenland ice sheet.



Each of these indicates how some characteristic of the environment has changed over the 11,000 or so years since the last ice age ended. The chemical composition of the ice core, for example, shows how the temperature of the atmosphere has changed. The distance between tree-rings reflects the average ambient temperature during each successive growing season.

Ice and trees show that the climate became suddenly colder about 10,300 years ago, then gradually warmed again over the ensuing century. Other records from the Californian coast and Tibet suggest that the cold snap may have been felt throughout the Northern Hemisphere, and perhaps worldwide.

Bjorck and colleagues propose that a weakening of solar activity may have caused this mini chill. It coincided, they find, with a large increase in the amount of beryllium-10 trapped in Greenland ice - evidence of a solar flicker.

This radioactive form of beryllium is produced when cosmic rays from space collide with nitrogen and oxygen atoms in the atmosphere. The magnetic field around the Earth protects the planet from cosmic rays. This field is stronger when the sun is more active - emitting more ultraviolet radiation and displaying more sunspots - so fewer cosmic rays can penetrate.

The proposed relationship between solar activity and climate change is controversial, partly because some have tried to pin modern-day global warming on it rather than on a human-induced greenhouse effect.

There is evidence, however, linking changes in solar activity to climate fluctuations in the more recent past. Abnormally high activity around AD 1100-1250, for example, has been mooted as the cause of a period of warming in medieval Europe. And the ’Little Ice Age’ between the sixteenth and eighteenth centuries coincided with a period of low solar activity.

Core values

The most pronounced climate swings, such as ice ages, happen slowly and last a long time - 100,000 years or so. Gradual, periodic changes in the shape of the Earth’s orbit around the sun are thought to trigger these larger-scale changes.

Evidence of shorter-term climate change has been observed before in ice-core records from Greenland and Antarctica. Apparently the global average temperature can switch between today’s mild climate and ice-age frigidity in just a few decades.

Sudden shifts are thought to be mostly due to ocean circulation. When ice sheets melt at the end of an ice age, the oceans get an injection of fresh water. By making seawater less salty and therefore less dense, this can suppress the conveyor-belt circulation that normally carries warm water from the tropics to the poles. Deprived of this source of heat, the high latitudes grow cold.

References

  1. Bjorck, S. et al. High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology, 29, 1107 - 1110, (2001).


PHILIP BALL | © Nature News Service

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>