Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was there life on Mars? Shiny rock coating may hold the answer

03.07.2006
A mysterious shiny coating found on rocks in many of Earth’s arid environments could reveal whether there was once life on Mars, according to new research.

The research, published in the July edition of the journal Geology, reveals that the dark coating known as desert varnish creates a record of life around it, by binding traces of DNA, amino acids and other organic compounds to desert rocks. Samples of Martian desert varnish could therefore show whether there has been life on Mars at any stage over the last 4.5 billion years.

The researchers hope that these results will encourage any future Mars Sample Return mission to add desert varnish to its Martian shopping list.

The source of the varnish, which looks like it has been painted onto the rocks, has intrigued scientists since the mid nineteenth century, including Darwin, who was so fascinated that he asked the geochemist Berzelius to investigate it. It was previously suggested that its dark colour was the result of the presence of the mineral manganese oxide, and that any traces of life found within the varnish came from biological processes caused by microbes in this mineral.

However, the new research used a battery of techniques, including high resolution electron microscopy, to show that any traces of life in the varnish do not come from microbes in manganese oxide. The research reveals that the most important mineral in the varnish is silica, which means that biological processes are not significant in the varnish’s formation. On desert rock surfaces, silica is dissolved from other minerals and then gels together to form a glaze, trapping organic traces from its surroundings.

Dr Randall Perry, lead author of the research from the Department of Earth Science and Engineering at Imperial College London, explained that as life is not involved in desert varnish formation, the varnish can act as an indicator of whether life was present or absent in the local environment.

Dr Perry said: “If silica exists in varnish-like coatings in Martian deserts or caves, then it may entomb ancient microbes or chemical signatures of previous life there, too. Desert varnish forms over tens of thousands of years and the deepest, oldest layers in the varnish may have formed in very different conditions to the shallowest, youngest layer.

“These lustrous chroniclers of the local surroundings can provide a window back in time. Martian desert varnish would contain a fascinating chronology of the Martian setting,” he added.

The research was carried out by researchers at Imperial College and the Universities of Auckland (NZ); Wisconsin-Parkside and Washington (US); and Nottingham Trent (UK).

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>