Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Study Finds Clock Ticking Slower On Ozone Hole Recovery

03.07.2006
The Antarctic ozone hole's recovery is running late. According to a new NASA study, the full return of the protective ozone over the South Pole will take nearly 20 years longer than scientists previously expected.

Scientists from NASA, the National Oceanic and Atmospheric Administration and the National Center for Atmospheric Research in Boulder, Colo., have developed a new tool, a math-based computer model, to better predict when the ozone hole will recover.


This still image is from an animation that zooms down to Antarctica and shows the daily ozone readings from July 1, 2005 to October 25,2005. Credit: NASA


This image shows the ozone hole on September 11, 2005. The ozone thinning over Antarctica reached its maximum extent for the year on this date. Credit: NASA

The Antarctic ozone hole is a massive loss of ozone high in the atmosphere (the stratosphere) that occurs each spring in the Southern Hemisphere. The ozone hole is caused by chlorine and bromine gases in the stratosphere that destroy ozone. These gases come from human-produced chemicals such as chlorofluorocarbons, otherwise called CFCs.

The ozone layer blocks 90-99 percent of the sun's ultraviolet radiation from making contact with Earth. That harmful radiation can cause skin cancer, genetic damage, and eye damage, and harm marine life.

For the first time, a model combines estimates of future Antarctic chlorine and bromine levels based on current amounts as captured from NASA satellite observations, NOAA ground-level observations, NCAR airplane-based observations, with likely future emissions, the time it takes for the transport of those emissions into the Antarctic stratosphere, and assessments of future weather patterns over Antarctica.

The model accurately reproduces the ozone hole area in the Antarctic stratosphere over the past 27 years. Using the model, the researchers predict that the ozone hole will recover in 2068, not in 2050 as currently believed.

"The Antarctic ozone hole is the poster child of ozone loss in our atmosphere," said author Paul Newman, a research scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. And lead author of the study. "Over areas that are farther from the poles like Africa or the U.S., the levels of ozone are only three to six percent below natural levels. Over Antarctica, ozone levels are 70 percent lower in the spring. This new method allows us to more accurately estimate ozone-depleting gases over Antarctica, and how they will decrease over time, reducing the ozone hole area."

International agreements like the Montreal Protocol have banned the production of most chemicals that destroy ozone. But the researchers show that the ozone hole has not started to shrink a lot as a result. The scientists predict the ozone hole will not start shrinking a lot until 2018. By that year, the ozone hole's recovery will make better time.

Edward Campion | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>