Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Satellite Positioning Software May Aid in Tsunami Warnings

University scientists using Global Positioning System (GPS) software developed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., have shown that GPS can determine, within minutes, whether an earthquake is big enough to generate an ocean-wide tsunami. This NASA-funded technology can be used to provide faster tsunami warnings.

A team led by Dr. Geoffrey Blewitt of the Nevada Bureau of Mines and Geology and Seismological Laboratory, University of Nevada, Reno, demonstrated that a large quake's true size can be determined within 15 minutes using GPS data. This is much faster than is possible with current methods.

Using just 15 minutes of GPS data of ground movement at multiple ground monitoring stations, scientists were able to determine the Sumatra earthquake's true size and tsunami generation potential. Image credit: University of Nevada, Reno

"Tsunami warning is a race against time," said co-author Dr. Seth Stein, Department of Geological Sciences, Northwestern University, Evanston, Ill. "Tsunamis travel at jet speed, so warning centers must accurately decide, within minutes, whether to issue alerts. This has to be done fast enough for the warning to be distributed to authorities in impacted areas so they can implement response plans. Together with seismometer and ocean buoy data, GPS adds another tool that can improve future tsunami danger assessments."

"We'll always need seismology as the first level of alert for large earthquakes, and we'll need ocean buoys to actually sense the tsunami waves," added Blewitt. "The advantage of including GPS in warning systems is that it quickly tells how much the ocean floor moved, and that information can directly set tsunami models into motion."

The new method, called GPS displacement, works by measuring the time radio signals from GPS satellites arrive at ground stations located within a few thousand kilometers of a quake. From these data, scientists can calculate how far the stations moved because of the quake. They can then derive an earthquake model and the quake's true size, called its 'moment magnitude.' This magnitude is directly related to a quake's potential for generating tsunamis.

As illustrated by the magnitude 9.2-9.3 Sumatra quake of December 2004, current scientific methods have difficulty quickly determining moment magnitude for very large quakes. That quake was first estimated at 8.0 using seismological techniques designed for rapid analysis. Because these techniques derive estimates from the first seismic waves they record, they tend to underestimate quakes larger than about 8.5. That is the approximate size needed to generate major ocean-wide tsunamis. The initial estimate was the primary reason warning centers in the Pacific significantly underestimated the earthquake's tsunami potential.

The potential of GPS to contribute to tsunami warning became apparent after the Sumatra earthquake. GPS measurements showed that quake moved the ground permanently more than 1 centimeter (0.4 inches) as far away as India, about 2,000 kilometers (1,200 miles) away from the epicenter. "With signals like that, an earthquake this huge can't hide," said Blewitt. "We hypothesized that if GPS data could be analyzed rapidly and accurately, they would quickly indicate the earthquake's true size and tsunami potential."

To test the feasibility of their approach, the scientists used NASA's satellite positioning data processing software to analyze data from 38 GPS stations located at varying distances from the Sumatra quake's epicenter. The software pinpoints a station's precise location to within 7 millimeters (0.3 inches). Only data that were available within 15 minutes of the earthquake were used. Results indicated most of the permanent ground displacements occurred within a few minutes of the arrival of the first seismic waves. Their analysis inferred an earthquake model and a moment magnitude of 9.0, very near the earthquake's final calculated size.

"Modeling earthquakes with GPS requires a robust, real-time ability to predict where GPS satellites are in space with exacting precision, which our software does," said Dr. Frank Webb, a JPL geologist. "This technique improves rapid estimates of the true size of great earthquakes and advances real-time tsunami modeling capabilities."

Results of the study are published in Geophysical Research Letters.

Other media contacts include Jill Boudreaux, University of Nevada, Reno, 775-784-4611; Megan Fellman, Northwestern University, 847-491-3115; and Harvey Leifert, American Geophysical Union, Washington, 202-777-7507.

JPL is managed for NASA by the California Institute of Technology.

Jill Boudreaux | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>