Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How volcanoes are formed

Volcanoes often gather in groups, the so-called hot spots. The Hawaiian Islands are a striking example. One of the reasons for such hot spots appearance – is formation of the so-called thermochemical plume in the Earth’s mantle.

Researchers from the United Institute of Geology, Geophysics and Mineralogy (Siberian Branch, Russian Academy of Sciences) under the guidance of Academician N.L. Dobretsov have developed such object formation model. The researchers are interested how the plume would behave near the Earth’s surface and whether lava would pour out on the surface. To this end, they have built a mathematical model.

The thermochemical plume is formed at the core and mantle boundary, in the location where chemical additive is present, which lowers melting temperature at the mantle bottom. At this section, the melted rock column starts to move through the mantle and it rises until it reaches the infusible layer of lithosphere. Having set against it, the plume spreads under the infusible layer, forming a mushroom-like head. The head supported from below grows up gradually, the heat coming from the Earth’s interior fuses the lithosphere bottom, the diameter of molten section is also growing. The secondary upflow appears, which in the long run bursts open to the surface as red-hot lava.

All these processes take up rather long time and depend on multiple parameters. Russian scientists tried to take everything into account. According to their calculations, the secondary plume rises up from the depth of 100 to 200 kilometers at the rate of 1.2 – 2.4 centimeters per year, and it can burst out to the surface from the depth of about 30 kilometers. Consequently, this path takes, depending on the depth and the traverse speed, from 2.9 to 14.2 million years. Thus, contemporary eruptions have a long-standing history.

Eruption can take place only under definite conditions and depends, specifically, on heat flow rate and the plume head diameter. If the head diameter is big, then lava may burst out into the surface at a vast territory in several hot spots. According to the Novosibirsk geophysicists’ calculations, if the flow rate is 3?10^11 Wt, eruption will happen, should the head diameter be 770 to 1310 kilometers, but if the flow rate is thrice as little, diameter of the region to be covered by volcanoes soon or not that soon, would make 450 to 770 kilometers.

Determining the growth length and size of the plume head, that rose from deep mantle layers toward the lithosphere, is an important task for geodynamics, and researchers are now actively solving it. Russian geophysicists’ calculations allow to determine the plume head diameter dependence upon time and thermal power of the source, and, consequently, to characterize known upflows and to forecast eruptions several million years in advance.

Sergey Komarov | alfa
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>