Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American Geophysical Union

30.06.2006
The Antarctic ozone hole will not disappear before 2068, nearly 20 years later than previously estimated, according to scientists using a new computer model. The ozone hole is caused by chlorine and bromine gases that destroy ozone in the stratosphere (an upper layer of Earth's atmosphere) during the southern hemisphere springtime.

The gases come from human-produced chemicals such as chlorofluorocarbons (CFCs). The Montreal Protocol, an international agreement adopted in 1987, limited the production of ozone-depleting substances. Amendments in 1990 and 1992 completely eliminated legal production and use of most of these chemicals, although there will be continued emissions from previously produced and stored quantities of those chemicals that have not been destroyed or recycled.

Researchers from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Center for Atmospheric Research (NCAR) have simulated the ozone hole in a new math- based computer model. They used estimates of chlorine and bromine levels over Antarctica from NASA and NOAA satellite observations, NOAA ground-level observations, NCAR air-based observations taken from airplanes, and the temperature of the Antarctic stratosphere in late spring, when the ozone hole begins to form.

The model accurately reproduced the ozone hole area in the Antarctic stratosphere over the past 27 years. The researchers then made projections of ozone-depleting substances in the future, leading to their prediction that the ozone hole will recover in 2068, not in 2050, as previously estimated. Their findings will be published 30 June in Geophysical Research Letters, a journal of the American Geophysical Union.

"The Antarctic ozone hole is the poster child of ozone loss in our atmosphere," said lead author Paul Newman, a research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Over areas that are farther from the poles like Africa or the U.S., the levels of upper atmospheric ozone are only three to six percent below natural levels. But, over Antarctica, ozone is 70 percent lower in the spring. This new method allows us to more accurately estimate ozone-depleting gases over Antarctica, and how they will decrease over time, improving the ozone hole."

The researchers also show that the ozone hole has not yet started to significantly shrink, which they predict will not occur until approximately 2018. They also concluded that greenhouse gas- forced climate change will have only a small impact on the Antarctic stratosphere and recovery of the ozone hole.

The upper ozone layer is important because it blocks 90-99 percent of the Sun's ultraviolet radiation from making contact with Earth's surface. This solar radiation can cause skin cancer and genetic and eye damage, and it can impact marine life.

"My job is to track ozone-depleting CFCs around the globe on a weekly basis," said Steven Montzka, a research chemist in the Global Monitoring Division at NOAA's Earth Systems Research Laboratory in Boulder, a co-author of the paper. "We make calculations with that information to determine how gases containing chlorine and bromine that have life spans in the atmosphere as long as 100 years are affecting ozone. This new prediction model is a very useful step forward to refining our understanding of ozone hole recovery time scales."

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>