Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American Geophysical Union

30.06.2006
The Antarctic ozone hole will not disappear before 2068, nearly 20 years later than previously estimated, according to scientists using a new computer model. The ozone hole is caused by chlorine and bromine gases that destroy ozone in the stratosphere (an upper layer of Earth's atmosphere) during the southern hemisphere springtime.

The gases come from human-produced chemicals such as chlorofluorocarbons (CFCs). The Montreal Protocol, an international agreement adopted in 1987, limited the production of ozone-depleting substances. Amendments in 1990 and 1992 completely eliminated legal production and use of most of these chemicals, although there will be continued emissions from previously produced and stored quantities of those chemicals that have not been destroyed or recycled.

Researchers from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Center for Atmospheric Research (NCAR) have simulated the ozone hole in a new math- based computer model. They used estimates of chlorine and bromine levels over Antarctica from NASA and NOAA satellite observations, NOAA ground-level observations, NCAR air-based observations taken from airplanes, and the temperature of the Antarctic stratosphere in late spring, when the ozone hole begins to form.

The model accurately reproduced the ozone hole area in the Antarctic stratosphere over the past 27 years. The researchers then made projections of ozone-depleting substances in the future, leading to their prediction that the ozone hole will recover in 2068, not in 2050, as previously estimated. Their findings will be published 30 June in Geophysical Research Letters, a journal of the American Geophysical Union.

"The Antarctic ozone hole is the poster child of ozone loss in our atmosphere," said lead author Paul Newman, a research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Over areas that are farther from the poles like Africa or the U.S., the levels of upper atmospheric ozone are only three to six percent below natural levels. But, over Antarctica, ozone is 70 percent lower in the spring. This new method allows us to more accurately estimate ozone-depleting gases over Antarctica, and how they will decrease over time, improving the ozone hole."

The researchers also show that the ozone hole has not yet started to significantly shrink, which they predict will not occur until approximately 2018. They also concluded that greenhouse gas- forced climate change will have only a small impact on the Antarctic stratosphere and recovery of the ozone hole.

The upper ozone layer is important because it blocks 90-99 percent of the Sun's ultraviolet radiation from making contact with Earth's surface. This solar radiation can cause skin cancer and genetic and eye damage, and it can impact marine life.

"My job is to track ozone-depleting CFCs around the globe on a weekly basis," said Steven Montzka, a research chemist in the Global Monitoring Division at NOAA's Earth Systems Research Laboratory in Boulder, a co-author of the paper. "We make calculations with that information to determine how gases containing chlorine and bromine that have life spans in the atmosphere as long as 100 years are affecting ozone. This new prediction model is a very useful step forward to refining our understanding of ozone hole recovery time scales."

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>