Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American Geophysical Union

30.06.2006
The Antarctic ozone hole will not disappear before 2068, nearly 20 years later than previously estimated, according to scientists using a new computer model. The ozone hole is caused by chlorine and bromine gases that destroy ozone in the stratosphere (an upper layer of Earth's atmosphere) during the southern hemisphere springtime.

The gases come from human-produced chemicals such as chlorofluorocarbons (CFCs). The Montreal Protocol, an international agreement adopted in 1987, limited the production of ozone-depleting substances. Amendments in 1990 and 1992 completely eliminated legal production and use of most of these chemicals, although there will be continued emissions from previously produced and stored quantities of those chemicals that have not been destroyed or recycled.

Researchers from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Center for Atmospheric Research (NCAR) have simulated the ozone hole in a new math- based computer model. They used estimates of chlorine and bromine levels over Antarctica from NASA and NOAA satellite observations, NOAA ground-level observations, NCAR air-based observations taken from airplanes, and the temperature of the Antarctic stratosphere in late spring, when the ozone hole begins to form.

The model accurately reproduced the ozone hole area in the Antarctic stratosphere over the past 27 years. The researchers then made projections of ozone-depleting substances in the future, leading to their prediction that the ozone hole will recover in 2068, not in 2050, as previously estimated. Their findings will be published 30 June in Geophysical Research Letters, a journal of the American Geophysical Union.

"The Antarctic ozone hole is the poster child of ozone loss in our atmosphere," said lead author Paul Newman, a research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Over areas that are farther from the poles like Africa or the U.S., the levels of upper atmospheric ozone are only three to six percent below natural levels. But, over Antarctica, ozone is 70 percent lower in the spring. This new method allows us to more accurately estimate ozone-depleting gases over Antarctica, and how they will decrease over time, improving the ozone hole."

The researchers also show that the ozone hole has not yet started to significantly shrink, which they predict will not occur until approximately 2018. They also concluded that greenhouse gas- forced climate change will have only a small impact on the Antarctic stratosphere and recovery of the ozone hole.

The upper ozone layer is important because it blocks 90-99 percent of the Sun's ultraviolet radiation from making contact with Earth's surface. This solar radiation can cause skin cancer and genetic and eye damage, and it can impact marine life.

"My job is to track ozone-depleting CFCs around the globe on a weekly basis," said Steven Montzka, a research chemist in the Global Monitoring Division at NOAA's Earth Systems Research Laboratory in Boulder, a co-author of the paper. "We make calculations with that information to determine how gases containing chlorine and bromine that have life spans in the atmosphere as long as 100 years are affecting ozone. This new prediction model is a very useful step forward to refining our understanding of ozone hole recovery time scales."

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>