Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster Tsunami Warnings Possible With Help of New GPS Software

29.06.2006
Scientists have demonstrated that the Global Positioning System (GPS), using newly developed data processing software, can determine within minutes whether an earthquake is powerful enough to generate an ocean-wide tsunami. The technology, developed by NASA's Jet Propulsion Laboratory, can be used to provide faster tsunami warnings.

A team led by Geoffrey Blewitt of the Nevada Bureau of Mines and Geology and the University of Nevada, Reno, demonstrated that a large quake's true size and potential to generate a major ocean-wide tsunami can be determined within 15 minutes using GPS data, much faster than is possible with current methods. They report their findings this month in Geophysical Research Letters, published by the American Geophysical Union.

"Tsunami warning is a race against time," says Seth Stein, of Northwestern University in Evanston, Illinois, a co-author of the paper. "Tsunamis travel at jet speed, so warning centers must accurately decide, within minutes, whether to issue alerts. This has to be done fast enough for the warning to be distributed to authorities in impacted areas so they can implement response plans. Together with seismometer and ocean buoy data, GPS adds another tool that can improve future tsunami danger assessments."

"We'll always need seismology as the first level of alert for large earthquakes, and we'll need ocean buoys to actually sense the tsunami waves," added Blewitt. "The advantage of including GPS in warning systems is that it quickly tells how much the ocean floor moved, and that information can directly set tsunami models into motion."

The new method, called GPS displacement, is based upon measuring precisely when radio signals from GPS satellites arrive at ground stations located within a few thousand kilometers [miles] of a quake. From these data, scientists can calculate how far the stations moved because of the quake, and then derive the quake's true size, called its "moment magnitude." This magnitude is directly related to a quake's tsunami-generation potential.

Current scientific methods cannot quickly determine moment magnitude for very large earthquakes, as illustrated by the magnitude 9.2-9.3 Sumatra quake of December 2004. That quake was first estimated at 8.0 using seismological techniques designed for rapid analysis. Because these techniques derive estimates from the first seismic waves to arrive, they tend to underestimate earthquakes larger than about 8.5, the minimal size that can generate major ocean-wide tsunamis. The initial estimate of 8.0 was the primary reason warning centers in the Pacific significantly underestimated the earthquake's tsunami potential.

The potential of GPS to contribute to tsunami warning became apparent after the Sumatra earthquake, when GPS measurements showed it moved the ground permanently more than one centimeter [0.4 inches] as far away as India, more than 2,000 kilometers [1,200 miles] away from the epicenter. "With signals like that, an earthquake this huge can't hide," said Blewitt. "We hypothesized that if GPS data could be analyzed rapidly and accurately, they would quickly indicate the earthquake's true size and tsunami potential."

To test the feasibility of their approach, the scientists used JPL's satellite positioning data processing software to analyze data from 38 GPS stations located at varying distances from the Sumatra quake's epicenter. The software pinpoints a station's precise location to within seven millimeters [0.3 inches]. Only data that were available within 15 minutes of the earthquake were used. Results indicated that most of the permanent ground displacements occurred within a few minutes of the arrival of the first seismic waves. Their analysis inferred an earthquake model and a moment magnitude of 9.0, very near the earthquake's final calculated size.

The GPS software technology described in this report was funded by NASA.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>