Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster Tsunami Warnings Possible With Help of New GPS Software

29.06.2006
Scientists have demonstrated that the Global Positioning System (GPS), using newly developed data processing software, can determine within minutes whether an earthquake is powerful enough to generate an ocean-wide tsunami. The technology, developed by NASA's Jet Propulsion Laboratory, can be used to provide faster tsunami warnings.

A team led by Geoffrey Blewitt of the Nevada Bureau of Mines and Geology and the University of Nevada, Reno, demonstrated that a large quake's true size and potential to generate a major ocean-wide tsunami can be determined within 15 minutes using GPS data, much faster than is possible with current methods. They report their findings this month in Geophysical Research Letters, published by the American Geophysical Union.

"Tsunami warning is a race against time," says Seth Stein, of Northwestern University in Evanston, Illinois, a co-author of the paper. "Tsunamis travel at jet speed, so warning centers must accurately decide, within minutes, whether to issue alerts. This has to be done fast enough for the warning to be distributed to authorities in impacted areas so they can implement response plans. Together with seismometer and ocean buoy data, GPS adds another tool that can improve future tsunami danger assessments."

"We'll always need seismology as the first level of alert for large earthquakes, and we'll need ocean buoys to actually sense the tsunami waves," added Blewitt. "The advantage of including GPS in warning systems is that it quickly tells how much the ocean floor moved, and that information can directly set tsunami models into motion."

The new method, called GPS displacement, is based upon measuring precisely when radio signals from GPS satellites arrive at ground stations located within a few thousand kilometers [miles] of a quake. From these data, scientists can calculate how far the stations moved because of the quake, and then derive the quake's true size, called its "moment magnitude." This magnitude is directly related to a quake's tsunami-generation potential.

Current scientific methods cannot quickly determine moment magnitude for very large earthquakes, as illustrated by the magnitude 9.2-9.3 Sumatra quake of December 2004. That quake was first estimated at 8.0 using seismological techniques designed for rapid analysis. Because these techniques derive estimates from the first seismic waves to arrive, they tend to underestimate earthquakes larger than about 8.5, the minimal size that can generate major ocean-wide tsunamis. The initial estimate of 8.0 was the primary reason warning centers in the Pacific significantly underestimated the earthquake's tsunami potential.

The potential of GPS to contribute to tsunami warning became apparent after the Sumatra earthquake, when GPS measurements showed it moved the ground permanently more than one centimeter [0.4 inches] as far away as India, more than 2,000 kilometers [1,200 miles] away from the epicenter. "With signals like that, an earthquake this huge can't hide," said Blewitt. "We hypothesized that if GPS data could be analyzed rapidly and accurately, they would quickly indicate the earthquake's true size and tsunami potential."

To test the feasibility of their approach, the scientists used JPL's satellite positioning data processing software to analyze data from 38 GPS stations located at varying distances from the Sumatra quake's epicenter. The software pinpoints a station's precise location to within seven millimeters [0.3 inches]. Only data that were available within 15 minutes of the earthquake were used. Results indicated that most of the permanent ground displacements occurred within a few minutes of the arrival of the first seismic waves. Their analysis inferred an earthquake model and a moment magnitude of 9.0, very near the earthquake's final calculated size.

The GPS software technology described in this report was funded by NASA.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>