Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster Tsunami Warnings Possible With Help of New GPS Software

29.06.2006
Scientists have demonstrated that the Global Positioning System (GPS), using newly developed data processing software, can determine within minutes whether an earthquake is powerful enough to generate an ocean-wide tsunami. The technology, developed by NASA's Jet Propulsion Laboratory, can be used to provide faster tsunami warnings.

A team led by Geoffrey Blewitt of the Nevada Bureau of Mines and Geology and the University of Nevada, Reno, demonstrated that a large quake's true size and potential to generate a major ocean-wide tsunami can be determined within 15 minutes using GPS data, much faster than is possible with current methods. They report their findings this month in Geophysical Research Letters, published by the American Geophysical Union.

"Tsunami warning is a race against time," says Seth Stein, of Northwestern University in Evanston, Illinois, a co-author of the paper. "Tsunamis travel at jet speed, so warning centers must accurately decide, within minutes, whether to issue alerts. This has to be done fast enough for the warning to be distributed to authorities in impacted areas so they can implement response plans. Together with seismometer and ocean buoy data, GPS adds another tool that can improve future tsunami danger assessments."

"We'll always need seismology as the first level of alert for large earthquakes, and we'll need ocean buoys to actually sense the tsunami waves," added Blewitt. "The advantage of including GPS in warning systems is that it quickly tells how much the ocean floor moved, and that information can directly set tsunami models into motion."

The new method, called GPS displacement, is based upon measuring precisely when radio signals from GPS satellites arrive at ground stations located within a few thousand kilometers [miles] of a quake. From these data, scientists can calculate how far the stations moved because of the quake, and then derive the quake's true size, called its "moment magnitude." This magnitude is directly related to a quake's tsunami-generation potential.

Current scientific methods cannot quickly determine moment magnitude for very large earthquakes, as illustrated by the magnitude 9.2-9.3 Sumatra quake of December 2004. That quake was first estimated at 8.0 using seismological techniques designed for rapid analysis. Because these techniques derive estimates from the first seismic waves to arrive, they tend to underestimate earthquakes larger than about 8.5, the minimal size that can generate major ocean-wide tsunamis. The initial estimate of 8.0 was the primary reason warning centers in the Pacific significantly underestimated the earthquake's tsunami potential.

The potential of GPS to contribute to tsunami warning became apparent after the Sumatra earthquake, when GPS measurements showed it moved the ground permanently more than one centimeter [0.4 inches] as far away as India, more than 2,000 kilometers [1,200 miles] away from the epicenter. "With signals like that, an earthquake this huge can't hide," said Blewitt. "We hypothesized that if GPS data could be analyzed rapidly and accurately, they would quickly indicate the earthquake's true size and tsunami potential."

To test the feasibility of their approach, the scientists used JPL's satellite positioning data processing software to analyze data from 38 GPS stations located at varying distances from the Sumatra quake's epicenter. The software pinpoints a station's precise location to within seven millimeters [0.3 inches]. Only data that were available within 15 minutes of the earthquake were used. Results indicated that most of the permanent ground displacements occurred within a few minutes of the arrival of the first seismic waves. Their analysis inferred an earthquake model and a moment magnitude of 9.0, very near the earthquake's final calculated size.

The GPS software technology described in this report was funded by NASA.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>