MetOp-A gets green light for 17 July launch date

With an array of sophisticated instrumentation, MetOp-A – jointly established by ESA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) – promises to provide data of unprecedented accuracy and resolution on a host of different variables such as temperature and humidity, wind speed and direction, ozone and other trace gases.

Since the arrival of the MetOp-A satellite at its launch site in Baikonur on 18 April 2006, the Service Module, Payload Module and Solar Array, which were shipped as individual items, have been integrated and tested.

Following a review of the satellite status and results of the testing to date, together with the outputs of EUMETSAT’s review of the readiness of the ground segment, launcher and overall system, EUMETSAT and ESA authorised EADS Astrium on 17 June to commence the MetOp-A satellite fuelling activities, marking a milestone in the EUMETSAT Polar System (EPS) programme.

Following the completion of the MetOp-A fuelling, the satellite will be integrated with the so-called Fregat upper stage before being encapsulated in the fairing. The resulting upper composite will then be integrated with the Soyuz launcher and the complete system will be rolled out to the launch pad three days prior to the launch.

The MetOp programme, which consists of three satellites to be flown sequentially to ensure the delivery of continuous data until at least 2020, forms the space segment of the EPS programme and represents the European contribution to a new cooperative venture with the American National Oceanic and Atmospheric Administration (NOAA).

Until MetOp-A launches, meteorological data from polar-orbiting satellites has had to be procured from NOAA weather satellites. After the launch, responsibilities for meteorological satellite services will be shared between Europe and the United States.

Consequently, through the Initial Joint Polar Satellite System (IJPS), which is a cooperative venture between EUMETSAT and NOAA, MetOp-A has been designed to work in conjunction with the NOAA satellite system, whereby MetOp-A replaces the NOAA 'morning orbit' service whilst a NOAA satellite occupies the 'afternoon shift'.

This means that the two satellites fly in complementary orbits, thus offering maximum coverage. This global observing system is able to provide invaluable meteorological data from polar orbit to users within 2 hours and 15 minutes of the measurements being taken.

MetOp-A is equipped with a set of new-generation European instruments that offer advanced remote sensing capabilities to both meteorologists and climatologists along with a set of 'heritage' instruments provided by NOAA and the French Space Agency (CNES).

In addition to its meteorological observations and climate monitoring objectives, MetOp-A will contribute to other missions, such as research and rescue and the monitoring of charged particles present in the orbital environment near Earth.

The MetOp-A satellite was developed by a consortium of European companies led by the main contractor EADS-Astrium, France.

Media Contact

Simonetta Cheli alfa

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors