Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MetOp-A gets green light for 17 July launch date

28.06.2006
MetOp-A has successfully completed the first phase of testing at the Baikonur Space Cosmodrome in Kazakhstan, confirming the launch date of the first European polar-orbiting satellite dedicated to operational meteorology for 17 July 2006.

With an array of sophisticated instrumentation, MetOp-A – jointly established by ESA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) – promises to provide data of unprecedented accuracy and resolution on a host of different variables such as temperature and humidity, wind speed and direction, ozone and other trace gases.

Since the arrival of the MetOp-A satellite at its launch site in Baikonur on 18 April 2006, the Service Module, Payload Module and Solar Array, which were shipped as individual items, have been integrated and tested.

Following a review of the satellite status and results of the testing to date, together with the outputs of EUMETSAT’s review of the readiness of the ground segment, launcher and overall system, EUMETSAT and ESA authorised EADS Astrium on 17 June to commence the MetOp-A satellite fuelling activities, marking a milestone in the EUMETSAT Polar System (EPS) programme.

Following the completion of the MetOp-A fuelling, the satellite will be integrated with the so-called Fregat upper stage before being encapsulated in the fairing. The resulting upper composite will then be integrated with the Soyuz launcher and the complete system will be rolled out to the launch pad three days prior to the launch.

The MetOp programme, which consists of three satellites to be flown sequentially to ensure the delivery of continuous data until at least 2020, forms the space segment of the EPS programme and represents the European contribution to a new cooperative venture with the American National Oceanic and Atmospheric Administration (NOAA).

Until MetOp-A launches, meteorological data from polar-orbiting satellites has had to be procured from NOAA weather satellites. After the launch, responsibilities for meteorological satellite services will be shared between Europe and the United States.

Consequently, through the Initial Joint Polar Satellite System (IJPS), which is a cooperative venture between EUMETSAT and NOAA, MetOp-A has been designed to work in conjunction with the NOAA satellite system, whereby MetOp-A replaces the NOAA 'morning orbit' service whilst a NOAA satellite occupies the 'afternoon shift'.

This means that the two satellites fly in complementary orbits, thus offering maximum coverage. This global observing system is able to provide invaluable meteorological data from polar orbit to users within 2 hours and 15 minutes of the measurements being taken.

MetOp-A is equipped with a set of new-generation European instruments that offer advanced remote sensing capabilities to both meteorologists and climatologists along with a set of 'heritage' instruments provided by NOAA and the French Space Agency (CNES).

In addition to its meteorological observations and climate monitoring objectives, MetOp-A will contribute to other missions, such as research and rescue and the monitoring of charged particles present in the orbital environment near Earth.

The MetOp-A satellite was developed by a consortium of European companies led by the main contractor EADS-Astrium, France.

Simonetta Cheli | alfa
Further information:
http://www.esa.int/esaEO/SEMOGREFWOE_economy_0.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>