Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming Surpassed Natural Cycles in Fueling 2005 Hurricane Season

26.06.2006
Global warming accounted for around half of the extra hurricane-fueling warmth in the waters of the tropical North Atlantic in 2005, while natural cycles were only a minor factor, according to a new analysis by Kevin Trenberth and Dennis Shea of the National Center for Atmospheric Research (NCAR). The study will appear in the June 27 issue of Geophysical Research Letters, published by the American Geophysical Union.

"The global warming influence provides a new background level that increases the risk of future enhancements in hurricane activity," Trenberth says. The research was supported by the National Science Foundation, NCAR's primary sponsor.

The study contradicts recent claims that natural cycles are responsible for the upturn in Atlantic hurricane activity since 1995. It also adds support to the premise that hurricane seasons will become more active as global temperatures rise. Last year produced a record 28 tropical storms and hurricanes in the Atlantic. Hurricanes Katrina, Rita, and Wilma all reached Category 5 strength.

Trenberth and Shea's research focuses on an increase in ocean temperatures. During much of last year's hurricane season, sea-surface temperatures across the tropical Atlantic between 10 and 20 degrees north, which is where many Atlantic hurricanes originate, were a record 1.7 degrees F above the 1901-1970 average. While researchers agree that the warming waters fueled hurricane intensity, they have been uncertain whether Atlantic waters have heated up because of a natural, decades-long cycle, or because of global warming.

By analyzing worldwide data on sea-surface temperatures (SSTs) since the early 20th century, Trenberth and Shea were able to calculate the causes of the increased temperatures in the tropical North Atlantic. Their calculations show that global warming explained about 0.8 degrees F of this rise. Aftereffects from the 2004-05 El Nino accounted for about 0.4 degrees F. The Atlantic multidecadal oscillation (AMO), a 60-to-80-year natural cycle in SSTs, explained less than 0.2 degrees F of the rise, according to Trenberth. The remainder is due to year-to-year variability in temperatures.

Previous studies have attributed the warming and cooling patterns of North Atlantic ocean temperatures in the 20th century—and associated hurricane activity—to the AMO. But Trenberth, suspecting that global warming was also playing a role, looked beyond the Atlantic to temperature patterns throughout Earth's tropical and midlatitude waters. He subtracted the global trend from the irregular Atlantic temperatures—in effect, separating global warming from the Atlantic natural cycle. The results show that the AMO is actually much weaker now than it was in the 1950s, when Atlantic hurricanes were also quite active. However, the AMO did contribute to the lull in hurricane activity from about 1970 to 1990 in the Atlantic.

Global warming does not guarantee that each year will set records for hurricanes, according to Trenberth. He notes that last year's activity was related to very favorable upper-level winds as well as the extremely warm SSTs. Each year will bring ups and downs in tropical Atlantic SSTs due to natural variations, such as the presence or absence of El Nino, says Trenberth. However, he adds, the long-term ocean warming should raise the baseline of hurricane activity.

Bob Henson | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>