Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boston university researchers develop new model of ice volume change based on Earth's orbit

26.06.2006
Model suggests Antarctic ice sheets more dynamic than previously believed

Through dated geological records scientists have known for decades that variations in the Earth's orbit around the sun – subtle changes in the distance between the two – control ice ages. But, for the first 2 million years of the Northern Hemisphere Ice Age there has always been a mismatch between the timing of ice sheet changes and the Earth's orbital parameters.

A new model of ice volume change developed by Boston University researchers Maureen Raymo and Lorraine Lisiecki proposes a reason for this discrepancy. Like other models, it is consistent with traditional Milankovitch theory – which holds that the three cyclical changes in the Earth's orbit around the Sun (obliquity, precession, and eccentricity) influence the severity of seasons and high latitude temperatures over time. However, the new model differs from earlier ones in that it allows for a much more dynamic Antarctic ice sheet.

According to the researchers, from 3 million years ago to about 0.8 million years ago, Northern Hemisphere ice volume appears to have varied mostly with the 41,000 year period of obliquity – the periodic shift in the direction or tilt of Earth's axis. However, summer insolation (incoming solar radiation), which is widely believed to be the major influence on high-latitude climate and ice volume change, is typically dominated by the 23,000 year precessional period – the slow "wobble" of the Earth on its axis.

"Because summer insolation is controlled by precession, and summer heating controls ice sheet mass balance, it is difficult to understand why the ice volume record is dominated by the obliquity frequency," said Dr. Raymo. "It's not a complete mismatch, but the precession frequency we think should be strong in geological records is not."

The new model proposes that during this time, ice volume changes occurred in both the Northern Hemisphere and Antarctica, each controlled by different amounts of local summer insolation paced by precession.

"The reason the frequency is not observable in records is because ice volume change occurred at both poles, but out of phase with each other. When ice was growing in the Northern Hemisphere, it was melting in the Southern," said Raymo.

The team believes scientists have been operating under the assumption that Antarctica has been exceptionally stable for 3 million years and very difficult to change climatically. "We don't tend to think of ice volume in that region as varying significantly, even on geologic time scales," said Raymo. "However, only a modest change in Antarctic ice mass is required to "cancel" a much larger Northern ice volume signal."

Records used to measure the ice volume, such as sea levels, integrate the whole world. According to Raymo, the new model demonstrates that while the precession frequency is actually strong in ice volume changes at each pole, in geologic records Northern and Southern hemisphere ice volume trends act to cancel each other out at this frequency.

The paper, which was published online today and will appear in an upcoming issue of the journal Science, proposes that the Antarctic ice sheet is more dynamic and far more capable of change than previously believed.

"If our theory holds true, it is a cause for concern with regard to climate changes not associated with orbital patterns as well," said Raymo.

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>