Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic shock absorbers for woodframe houses

21.06.2006
Earthquake simulation to test new damping system in full-scale townhouse

As part of a major international project to design more earthquake-resistant woodframe buildings, an engineer from Rensselaer Polytechnic Institute will be testing a damping system designed to act as a seismic shock absorber. The dampers, which have never been tested before in wood construction, will be installed inside the walls of a full-scale, 1,800-square-foot townhouse -- the world's largest wooden structure to undergo seismic testing on a shake table.

The unprecedented testing is part of a $1.24 million international project called NEESWood, funded by the National Science Foundation through its George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES) program. The goal of NEESWood is to safely increase the height of woodframe buildings in active seismic zones through the development of a design approach that considers a wide range of performance levels -- from completely undamaged to almost collapsing.

The height of woodframe buildings traditionally has been limited to about four stories, mainly due to a lack of understanding of how taller structures might respond to earthquakes and other natural disasters. "We don't have accurate physical data to fully define how wood structures behave in earthquakes," said Michael Symans, associate professor of civil and environmental engineering at Rensselaer. "We have some models, but their accuracy has not been verified with full-scale test data. This experiment will help us to further evaluate and refine those models."

Symans will be supervising the damping tests at the University at Buffalo's Structural Engineering and Earthquake Simulation Laboratory (SEESL), which is home to two adjacent three-dimensional shake tables where the test structure is anchored.

On July 6, a demonstration of the damper test will be open to the media, as well as broadcast live on the Web at http://nees.buffalo.edu/projects/NEESWood/video.asp.

One approach to limiting the damage in woodframe structures is to look at the problem from an energy point of view, according to Symans. In an earthquake, the shaking ground imparts a certain amount of energy into the structure -- energy that must eventually be dissipated. During the earthquake, some of the energy is transformed to kinetic energy -- moving a building from side to side -- or to strain energy, in which the structural framing system becomes so deformed that it can be permanently damaged or even collapse. The goal of the dampers is to absorb a large portion of the earthquake energy, much like shock absorbers in a car absorb bumps in the road.

The damping system is essentially made up of fluid-filled shock absorbers installed horizontally throughout the walls of the house. "If we can channel some of the energy into the dampers, we can reduce the strain energy demand and thus reduce damage to the structure," Symans said. The damping technology has been applied to steel and concrete buildings, but never before to wood structures. For the NEESWood experiment, the fluid dampers are being donated by Taylor Devices Inc., of North Tonawanda, N.Y.

"For the longest time, building codes have been prescriptive -- the designer is told what to do to meet certain specifications, without explicit consideration given to the expected performance," Symans said. But lately there has been a shift in thinking as more large earthquakes have hit high-population areas. About half of the approximately $40 billion in loss caused by the 1994 Northridge earthquake in the Los Angeles region was associated with wood structures, Symans notes, and this was much more damage than the general public expected. "The perception among building owners and the general public is that if a structure is built according to code, it will perform well during an earthquake," he said. "This is true of snow, rain, and other typical severe weather conditions, but not necessarily for hurricanes and earthquakes."

Previous large-scale shake table tests have been performed on simple, box-like structures, but the NEESWood Project involves testing of a much more realistic building, Symans said. The townhouse in this experiment has balconies, an atrium, and other defining features that are more likely to be in the floor plan of a real woodframe residential building. As the testing progresses, the team will be adding finish materials to the building, culminating in November with the violent shaking of the furnished, three-bedroom, two-bathroom townhouse -- mimicking what an earthquake that occurs only once every 2,500 years would generate, according to Symans.

Phase 1 will be a benchmark test of the "bare bones" structure. Phase 2 will test the dampers on this benchmark building, and then finish materials will be added for each additional phase to test how these affect the response of the structure. Each phase will be run at increasingly higher levels of shaking, designed to simulate the increasing intensities that were recorded during the Northridge earthquake.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>