Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Residual Volcanic Heat May Be Melting Greenland Ice

17.12.2001


Residual heat from volcanic activity may be causing a river of ice to flow in Greenland, a new study indicates. Geologists have found that the region directly above a stream of relatively fast moving ice is thinner than a simple model of glacier change would predict. This observation, described in a report published today in the journal Science, may help researchers pin down the contribution ice sheets have made to sea level changes.

Glaciers are built up from layers of fused snow that spread out under their own weight as they accumulate, leaving a frozen record of their life history behind. Studying ice-penetrating radar images to piece together the ages of different layers in the Greenland sheet, researchers found that only significant melting could explain the thickness of an area resting above a lengthy ice flow. The old crust beneath this 600-square-kilometer region should melt about a few millimeters of ice each year; instead, up to 10 centimeters liquify. Although its true nature and duration are not clear, the hotspot is comparable in size and strength to the Yellowstone caldera, a place where the crust collapsed after a volcanic eruption. "The rates of melting are a surprise," lead author Mark Fahnestock says, "and the fact that it’s localized in the right place [to cause the ice flow]."

Ice sheets and flows are important stores and sources of water, he adds, so understanding where they come from should improve glaciologists’ understanding of glacier behavior and corresponding changes in sea level. In an accompanying article, geologist Christina Hulbe of Portland State University notes that water melting from the base of a glacier can alter the way it moves and stores energy. This unexpected new finding, she writes, "reminds us that basal melt water matters and that it may be important in places we never suspected."


JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/121401/2.html

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>