Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricanes and the U.S. Gulf Coast: Science and Sustainable Rebuilding

20.06.2006
The American Geophysical Union today published the report of a Conference of Experts, intended to guide policy makers charged with rebuilding areas affected by Hurricanes Katrina and Rita. The 20 scientists who participated in the conference looked at seven major areas: hurricanes, storm surge and flooding, subsidence, climate change, hydrology, infrastructure, and disaster preparedness and response. For each topic, they assessed current understanding of the phenomenon, near-term scientific needs, and longer-term directions.

Summary of Report

The knowledge available among AGU members provides scientific expertise on nearly all of the physical environment of the dynamic Gulf Coast ecosystem complex. Intelligently rebuilding features such as fisheries, oil fields, seaports, farms, and wetlands after hurricanes Katrina and Rita will require "a well-constructed collaborative effort to maximize the role of science in decisions made about the rebuilding," wrote Charles Groat, former director of the U.S. Geological Survey, in a news article published in Eos that stimulated an AGU meeting of experts.

As a step toward developing a scientific basis for safer communities along the Florida-Alabama-Mississippi-Louisiana-Texas coastline, AGU convened an interdisciplinary 'Conference of Experts' on 11-12 January 2006 to discuss what we, as Earth and space scientists, know about the present and projected environment in New Orleans and the Gulf Coast areas affected by the hurricanes of 2005. Twenty scientists, all experts in the fields of science relevant to the Gulf Coast, met to consider ideas for a coordinated effort to integrate science into the decision-making processes necessary for the area's sustainable rebirth. Political, economic, and social issues were intentionally not discussed. Nevertheless, it was recognized that these issues are intertwined with science and are of paramount importance. This report contains a summary of the discussion and is intended to be helpful in providing scientific understanding useful in redevelopment of the affected area.

The objectives of the meeting were to review and assess the scientific knowledge in the areas most relevant in hurricane protection, to identify gaps in knowledge that could be filled by focused research, and to propose mechanisms to link science to the most effective reconstruction of New Orleans and other coastal areas affected by the recent hurricanes. The meeting attendees considered seven topics addressing the current understanding, near- term needs, and longer-term directions for: hurricanes, storm surge and flooding, subsidence, climate change, hydrology, infrastructure, and disaster preparedness and response. The messages from the conference are as follows.

Hurricanes

While all hurricanes are detected before landfall and their trajectories known to some degree, predictions of cyclone intensity and structure still contain great uncertainty. Although there have been substantial increases in the accuracy of hurricane track prediction over the past decade, seasonal predictions have shown little skill, for example, predicting an increasing number of hurricanes when fewer actually occur. European ocean-atmosphere models, however, have demonstrated improved capability and may provide more reasonable approximations in the future. Rising sea surface temperatures, routinely observed through infrared and microwave emission satellite sensors, increase the tropical cyclone heat potential and contribute to tropical cyclone formation and their intensification. The conference participants proposed the use of improved seasonal forecasts such as those being applied in Europe.

Storm Surge and Flooding

The basic physics of storm surge is well understood. Remarkably accurate numerical models have existed for approximately 25 years in the United States and abroad for geometrically simple coastal areas. Recent developments have allowed modeling of complex regions such as the Louisiana shoreline that include channels, levees, and buildings.

Nevertheless, better wind data, enhanced shoreline topography, and improved techniques to assess the location and range of flooding are necessary in storm surge models for simulating the range of flooding probabilities. Such modeling scenarios can be used to predict the extent of damage such as levee overtopping, were such an extreme event to take place. In the longer term, advanced high- resolution data could provide even better approximations of inundation and expected damage from flooding, thus allowing cities and regional disaster mitigation agencies to prepare an appropriate response to an impending disaster.

Subsidence

Natural processes as well as human impacts have contributed to subsidence, the sinking of land over time, along the Gulf Coast. Presently, there is considerable discussion and debate among the scientific community regarding mechanisms and rates of subsidence in the Mississippi delta area. Regional faulting, forced drainage, oil and gas extraction, and groundwater withdrawal all have led to lowering of the elevation of highways and levees below their originally designed levels.

As a result of subsidence, new U.S. Federal Emergency Management Agency Base Flood Elevations maps that will be available for the area in 2007 may not be accurate; yet those maps will form the basis for flood control and establish levels for rebuilding. In the future, levees and other flood control systems should be designed and built to account for the amount of sea level rise and predicted subsidence expected over the design life of the structure. In designing new structures, consideration should be given to likely changes over time in storm surge, subsidence, and sea level. New and improved instrumentation would allow researchers to make better predictions of geological and subsidence processes.

Climate Change

There are strong theoretical reasons to expect that warming of the oceans already has led to more intense hurricanes and will continue to affect tropical storm characteristics. Increasing ocean temperatures also cause sea level to rise due to thermal expansion and thus enhance storm surge. It is well established that a sea surface temperature of at least 26°C (79°F) is required for hurricane formation.

Recent analyses have found that the frequency of intense hurricanes and severe rainfall has increased in recent decades. Hurricane strength and numbers are projected to increase further with rising ocean temperatures. The hurricane climatology of the twenty- first century will be quite different from that of the twentieth century. Planning should take into account the strong probability of more frequent and more intense hurricanes. In the near future, prediction models will be able to provide notice of exceptionally strong hurricane seasons more in advance than is presently possible. As these advances continue, and as more is known about the fundamental physical basis of climate change, hurricane response plans can be continually improved.

Hydrology

Human settlement in New Orleans and throughout the Gulf Coast has greatly modified the natural conditions of the Mississippi River system. In New Orleans, for example, canals have been dredged for navigation and drainage, levees that limit flooding have been raised, tidal wetlands have been eliminated, and dams and locks have been constructed. As development projects have continued and expanded, the mechanisms that had preserved the Mississippi delta in the face of subsidence and erosion have been largely stifled. While the rebuilding of coastal communities has to account for such conditions, long-term flood protection will likely require reestablishing some natural systems such as wetlands that serve as a natural barrier adding some protection from storm surge and flooding.

Infrastructure

When floodwaters from hurricanes Katrina and Rita spilled through the Gulf Coast and breached the levee system in New Orleans, infrastructure damage ranged from unusable roads and bridges to inoperable telecommunications, electrical, and satellite observation systems. The breakdown of communications, both physical and organizational, will require extensive attention and modification. Additionally, ravaged systems such as navigation channels and coastal ports will require renovation and better protection against future damage. Improved models supported by a better understanding of the region's natural systems are needed to plan a unified system of storm protection.

Disaster Preparedness and Response

No matter how resilient the new Gulf Coast may be, preparation for future hurricanes will require development of the capability for massive and timely responses to protect resources and lives. Key to an effective response are detailed scenarios, maps, and visualizations of the affected areas. In addition, training of first responders is necessary so they can react to ever changing scientific data. Most critical is accurate information with three to four days notice that would provide time for evacuations, if necessary. Improved forecasts of hurricane trajectory, intensity, and structure are most vital to completing these tasks.

Future Considerations

The key objective of the conference of experts was to ensure the integration of science into the overall reconstruction efforts after the recent hurricane disasters along the Gulf Coast. Given the breadth of the Earth and space science topics within AGU's purview, the organization and member scientists are well prepared to discuss and demonstrate the relevance of sound science to decision-makers charged with rebuilding when future catastrophes strike.

Several recommendations emerged from the conference that would continue the dialogue between scientists and planners at all levels. The suggestions are as follows:

(1) Establish a multidisciplinary steering committee to maintain an overview on reconstruction and new threats to the region from natural disasters, and charge that committee with monitoring the rebuilding and identifying key scientific issues and assets to address these issues;

(2) assemble a database of experts who would be available to provide scientific guidance as needed; and

(3) provide periodic assessments of reconstruction and planning efforts.

Successful and sustainable reconstruction of New Orleans and the Gulf Coast and the effective planning for future hurricane events must incorporate the best available science. This can only be ensured by strong continuing interaction among scientists, planners, and decision-makers at all levels.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/report/hurricanes/

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>