Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thawing permafrost a significant source of carbon

19.06.2006
Permafrost, permanently frozen soil, isn’t staying frozen and a type of soil called loess contained deep within thawing permafrost may be releasing significant, and previously unaccounted for, amounts of carbon into the atmosphere, according to authors of a paper published this week in the journal Science.

Preliminary assessments by scientists from Russia, the University of Florida, and the University of Alaska Fairbanks indicate that loess permafrost, which covers more than a million square kilometers in Siberia and Alaska, is a large carbon reservoir with the potential to be a significant contributor of atmospheric carbon, yet it is seldom incorporated into analyses of changes in global carbon reservoirs.

“The unique aspect of the Siberian loess permafrost is that it is quite deep – 20 to 40 meters - and has a surprisingly high carbon concentration at depth for a mineral soil,” said Terry Chapin, co-author from the Institute of Arctic Biology at UAF. “This paper explains the processes that led to the accumulation of large amounts of soil carbon and the processes that could lead to its return to the atmosphere.”

The largest carbon reservoir on Earth is the ocean, which scientists estimate holds about 40,000 gigatons; soils contain about 2,500 Gt and vegetation about 650 Gt. According to the authors, about 500 Gt of carbon are contained in the thaw-threatened loess, also called yedoma, of Siberia and Alaska.

“I was surprised, because it is unusual to find major new large carbon stocks,” Chapin said. “We have spent more than five years discussing among ourselves all the details of the calculations, because initially I did not believe that the pool could be both so large and so decomposible (once thawed).”

Permafrost has been seldom incorporated into global carbon budgets in part because the “... size of the carbon pool was so poorly quantified ... and in part because global data bases for soils have been standardized to provide data only for the top meter of soil,” Chapin said. “People know about carbon in permafrost - it’s not a trivial amount,” said Ted Schuur, co-author from the University of Florida. “Normally, scientists look for carbon in the upper layers of permafrost where organic matter decomposes.”

Laboratory and field experiments by the scientists demonstrate that the organic matter in yedoma decomposes quickly when it is thawed and produces rates of carbon release similar to those of productive northern grassland soils. “If these rates continue as field observations suggest, most carbon in recently thawed yedoma will be released within a century - a striking contrast to the preservation of carbon for tens of thousands of years when frozen in permafrost,” state the authors.

The National Science Foundation provided financial support for this research.

Marie Gilbert | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>