Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Thawing permafrost a significant source of carbon

Permafrost, permanently frozen soil, isn’t staying frozen and a type of soil called loess contained deep within thawing permafrost may be releasing significant, and previously unaccounted for, amounts of carbon into the atmosphere, according to authors of a paper published this week in the journal Science.

Preliminary assessments by scientists from Russia, the University of Florida, and the University of Alaska Fairbanks indicate that loess permafrost, which covers more than a million square kilometers in Siberia and Alaska, is a large carbon reservoir with the potential to be a significant contributor of atmospheric carbon, yet it is seldom incorporated into analyses of changes in global carbon reservoirs.

“The unique aspect of the Siberian loess permafrost is that it is quite deep – 20 to 40 meters - and has a surprisingly high carbon concentration at depth for a mineral soil,” said Terry Chapin, co-author from the Institute of Arctic Biology at UAF. “This paper explains the processes that led to the accumulation of large amounts of soil carbon and the processes that could lead to its return to the atmosphere.”

The largest carbon reservoir on Earth is the ocean, which scientists estimate holds about 40,000 gigatons; soils contain about 2,500 Gt and vegetation about 650 Gt. According to the authors, about 500 Gt of carbon are contained in the thaw-threatened loess, also called yedoma, of Siberia and Alaska.

“I was surprised, because it is unusual to find major new large carbon stocks,” Chapin said. “We have spent more than five years discussing among ourselves all the details of the calculations, because initially I did not believe that the pool could be both so large and so decomposible (once thawed).”

Permafrost has been seldom incorporated into global carbon budgets in part because the “... size of the carbon pool was so poorly quantified ... and in part because global data bases for soils have been standardized to provide data only for the top meter of soil,” Chapin said. “People know about carbon in permafrost - it’s not a trivial amount,” said Ted Schuur, co-author from the University of Florida. “Normally, scientists look for carbon in the upper layers of permafrost where organic matter decomposes.”

Laboratory and field experiments by the scientists demonstrate that the organic matter in yedoma decomposes quickly when it is thawed and produces rates of carbon release similar to those of productive northern grassland soils. “If these rates continue as field observations suggest, most carbon in recently thawed yedoma will be released within a century - a striking contrast to the preservation of carbon for tens of thousands of years when frozen in permafrost,” state the authors.

The National Science Foundation provided financial support for this research.

Marie Gilbert | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>