Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows much of the world emerged from last Ice Age together

09.06.2006
Timing of retreat consistent with temperature records and global atmospheric CO2 records from Antarctica; Greenland and North Atlantic likely remained in deep-freeze for 3,000 years as a result of warming elsewhere

The Earth Institute at Columbia University, June 8, 2005--The end of the recurring, 100,000-year glacial cycles is one of the most prominent and readily identifiable features in records of the Earth's recent climate history. Yet one of the most puzzling questions in climate science has been why different parts of the world, most notably Greenland, appear to have warmed at different times and at different rates after the end of the last Ice Age.


Aerial view of glacial moraine (parallel lines of hills) surrounding Lake Pukaki in southern New Zealand sampled by the researchers that mark the advance of the Tasman glacier (upper left). Credit: George Denton

However, a new study appearing in the upcoming issue of the journal Science suggests that, except for regions of the North Atlantic, most of the Earth did, in fact, begin warming at the same time roughly 17,500 years ago. In addition, scientists suggest that ice core records from Greenland, which show that average temperatures there did not warm appreciably until about 15,000 years ago, may have remained in a hyper-cold state largely as a result of events triggered by warming elsewhere.

The research, led by Joerg Schaefer from the Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, and George Denton at the University of Maine, relied on a method known as cosmogenic or surface-exposure dating, which enabled the scientists to determine how long rock surfaces have been exposed since the glaciers retreated. As cosmic rays penetrating the Earth's atmosphere strike the scoured rock, they form an isotope of the element beryllium, 10Be, at a known rate. By measuring the minute amounts of 10Be in rock samples from glacial moraines in California and New Zealand and comparing these data to previously published results from Wyoming, Oregon, Montana Argentina, Australia and Switzerland, Schaefer and his colleagues were able to narrow down when glaciers around the world began to retreat. They found that almost everywhere they looked the glaciers began to pull back approximately 17,500 years ago. Additional studies from tropical South America southern Tibet have also produced similar results.

"It's amazing everything fits so well and that every moraine record of the last termination seems to match with rising temperature in the Antarctic and CO2 in the atmosphere," said Schaefer, a Doherty Associate Research Scientist. "It's especially surprising because Antarctica was classically thought to be too remote and climatically isolated to respond in a synchronous manner with the rest of the planet." The only place that does not fit the observed warming pattern is Greenland, which did not begin to emerge from the last Ice Age until roughly 15,000 years ago. The authors believe that this anomaly may be because the North Atlantic experienced continued, hyper-cold winters during the intervening 2,500 years that prevented the region from warming on average.

Glaciers, they write, are highly sensitive to summer temperatures. Instead of responding to the rise in global summer temperatures that occurred around 17,500 years ago, however, Greenland may have experienced a continued ice age climate caused by massive armadas of icebergs from the melting continental ice sheets on North America and Northern Europe spreading across the North Atlantic. The freshwater from the melting icebergs likely caused an ocean current known as the meridonal overturning circulation, which transports heat northward from the equator, to almost cease and prevent Greenland and the North Atlantic from warming for millennia after the rest of the planet had begun to do so.

"The spreading sea ice would have also brought the circum-polar winds farther south," said Schaefer. "This would have interfered with temperature and precipitation patterns in the northern mid-latitudes and put the North Atlantic in the deep freeze for 2,500 years."

Ken Kostel | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>